Intrapulmonary blood flow redistribution during hypoxia increases gas exchange surface area
- PMID: 7201993
- DOI: 10.1152/jappl.1982.52.6.1575
Intrapulmonary blood flow redistribution during hypoxia increases gas exchange surface area
Abstract
We have previously shown that airway hypoxia causes pulmonary capillary recruitment and raises diffusing capacity for carbon monoxide. This study was designed to determine whether these events were caused by an increase in pulmonary vascular resistance, which redistributed blood flow toward the top of the lung, or by an increase in cardiac output. We measured capillary recruitment at the top of the dog lung by in vivo microscopy, gas exchange surface area of the whole lung by diffusing capacity for carbon monoxide, and blood flow distribution by radioactive microspheres. During airway hypoxia recruitment occurred, diffusing capacity increased, and blood flow was redistributed upward. When a vasodilator was infused while holding hypoxia constant, these effects were reversed; i. e., capillary "derecruitment" occurred, diffusing capacity decreased, and blood flow was redistributed back toward the bottom of the lung. The vasodilator was infused at a rate that left hypoxic cardiac output unchanged. These data show that widespread capillary recruitment during hypoxia is caused by increased vascular resistance and the resulting upward blood flow redistribution.