Biliprotein assemble in the disc-shaped phycobilisomes of Rhodella violacea. On the molecular composition of energy-transfering complexes (tripartite units) forming the periphery of the phycobilisome
- PMID: 720347
- DOI: 10.1111/j.1432-1033.1978.tb20936.x
Biliprotein assemble in the disc-shaped phycobilisomes of Rhodella violacea. On the molecular composition of energy-transfering complexes (tripartite units) forming the periphery of the phycobilisome
Abstract
Heterogeneous complexes with a molecular weight of about 790000 containing B-phycoerythrin (Bangiales phycoerythrin) and C-phycocyanin (Cyanophyceae phycocyanin) in a molar pigment ratio of 2:1 were isolated from purified, dissociated phycobilisomes. Electron microscopical investigations revealed structures of three discs aggregated face to face with an apparent distance of 1.5 nm between each disc. Two discs may represent phycoerythrin and one phycocyanin. The complexes are structurally identical with tripartite units of the phycobilisome periphery. Fluorescence data confirmed the integrity of isolated tripartite units. Excitation at 546 nm gives a fluorescence maximum at 644 nm, indicating intermolecular transfer of excitation energy from phycoerythrin to phycocyanin. Comparative subunit analyses and spectral data suggested that no allophycocyanin is present. Cross-linking experiments gave evidence for a polar arrangement of phycocyanin within the complex. This pigment itself is an aggregate of two smaller molecules each having a molecular weight of about 140000. Tripartite units contain all the phycoerythrin and phycocyanin of the phycobilisome. On this basis, a phycobilisome model is proposed which combines the aspects of biliprotein distribution, energy transfer and fine structure.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
