Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Sep;49(3):482-90.
doi: 10.1152/jappl.1980.49.3.482.

Ventricular volume overload alters cardiac output distribution in rats during exercise

Ventricular volume overload alters cardiac output distribution in rats during exercise

S F Flaim et al. J Appl Physiol Respir Environ Exerc Physiol. 1980 Sep.

Abstract

A rat model for chronic left ventricular volume overload (a-v fistula, 2 mo) was used to test the effects of acute exhaustive treadmill exercise (EX) (5 min, 70 ft/min, 0 degrees grade) on cardiocirculatory hemodynamics and cardiac output (CO) distribution during heart failure (HF). Control (C) and HF rats were studied at rest (R) and during the last minute of EX. Heart rate (HR), mean arterial pressure (MAP), and left ventricular end-diastolic (LVEDP) pressure were recorded and CO, blood flow (BF) to various regions, and total CO distribution were determined by the radioactive microsphere technique. In HF, biventricular hypertrophy and elevated LVEDP at R were correlated with an average shunt size equaling 37% of total CO. In both groups, CO and HR rose during EX with no change in MAP. Systemic CO in HF was reduced compared to C during both R and EX. BF to splanchnic, renal, cutaneous, and testicular circulations was compromised at R in HF, whereas only skeletal muscle BF was compromised in HF during EX. Data for CO distribution suggest that the major effect of HF during R was increased delivery to the coronary and the skeletal muscle beds at the expense of the cutaneous and renal beds, whereas %CO to the cerebral, hepatic, and gastrointestinal beds was spared. During EX, %CO to skeletal muscle beds in HF was attenuated compared to C, whereas that to the coronary bed was increased with no change in other regions.

PubMed Disclaimer

Similar articles

Cited by

Publication types