A theoretical model of protein, fluid, and small molecule transport in the lung
- PMID: 7204178
- DOI: 10.1152/jappl.1981.50.1.1
A theoretical model of protein, fluid, and small molecule transport in the lung
Abstract
The purposes of this research were to derive a mathematical model of blood-intestinal transport for the lung and to study the ability of this model to describe the results of previous lymph-collection and multiple-indicator experiments on the lungs of unanesthetized sheep. We used a three-pore model of the microvascular barrier to describe lymph flow, lymph-to-plasma ratios (L/P) of eight endogenous proteins, and the microvascular permeability-surface area (PST) of the lungs to [14C]urea in sheep experiments under base-line conditions and after acute elevation of the left atrial pressure. The results indicate that endothelial pathways consisting of a small pore (28 A), intermediate pore (180 A), and a large pore (1,000 A) can describe experimental L/P values and PST. The description of lymph flow required either than interstitial fluid pressure increase with left atrial pressure or that postcapillary venous resistance decrease relative to precapillary values. We concluded that multiple-pore theory is a useful approach to the description of lung blood-interstitial transport.
Similar articles
-
Distribution of transvascular pathway sizes through the pulmonary microvascular barrier.Ann Biomed Eng. 1987;15(2):139-55. doi: 10.1007/BF02364050. Ann Biomed Eng. 1987. PMID: 3296872 Review.
-
Models of lung transvascular fluid and protein transport.Ann Biomed Eng. 1987;15(2):127-38. doi: 10.1007/BF02364049. Ann Biomed Eng. 1987. PMID: 3592323
-
A model of unsteady-state transvascular fluid and protein transport in the lung.J Appl Physiol Respir Environ Exerc Physiol. 1984 May;56(5):1389-402. doi: 10.1152/jappl.1984.56.5.1389. J Appl Physiol Respir Environ Exerc Physiol. 1984. PMID: 6725093
-
Effects of coronary flow reduction on lung vascular tissue transport in sheep.J Appl Physiol Respir Environ Exerc Physiol. 1983 Dec;55(6):1906-15. doi: 10.1152/jappl.1983.55.6.1906. J Appl Physiol Respir Environ Exerc Physiol. 1983. PMID: 6662782
-
Pulmonary interstitial resistance.Ann Biomed Eng. 1987;15(2):173-82. doi: 10.1007/BF02364052. Ann Biomed Eng. 1987. PMID: 3296873 Review.
Cited by
-
Distribution of transvascular pathway sizes through the pulmonary microvascular barrier.Ann Biomed Eng. 1987;15(2):139-55. doi: 10.1007/BF02364050. Ann Biomed Eng. 1987. PMID: 3296872 Review.
-
Optical measurements of lung microvascular filtration coefficient using polysulfone fibers.Ann Biomed Eng. 1994 Nov-Dec;22(6):660-73. doi: 10.1007/BF02368291. Ann Biomed Eng. 1994. PMID: 7872574
-
Direct effects of E coli endotoxin on structure and permeability of pulmonary endothelial monolayers and the endothelial layer of intimal explants.Am J Pathol. 1986 Jan;122(1):140-51. Am J Pathol. 1986. PMID: 3510552 Free PMC article.
-
Models of lung transvascular fluid and protein transport.Ann Biomed Eng. 1987;15(2):127-38. doi: 10.1007/BF02364049. Ann Biomed Eng. 1987. PMID: 3592323
-
Transient transcapillary exchange of water driven by osmotic forces in the heart.Am J Physiol Heart Circ Physiol. 2003 Sep;285(3):H1317-31. doi: 10.1152/ajpheart.00587.2002. Epub 2003 May 8. Am J Physiol Heart Circ Physiol. 2003. PMID: 12738617 Free PMC article.