Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980;54(1):39-50.
doi: 10.1007/BF01875375.

Uptake of glycine from L-alanylglycine into renal brush border vesicles

Uptake of glycine from L-alanylglycine into renal brush border vesicles

C L Welch et al. J Membr Biol. 1980.

Abstract

Isolated renal brush border microvilli vesicles were employed to study the uptake of radiolabel from L-Ala. [3H]Gly and D-Ala.[3H]Gly as well as to determine the presence of dipeptidase activity. Microvilli vesicles were prepared from porcine kidney cortex by differential centrifugation through hypotonic Tris buffer containing Mg2+. The microvilli vesicles transiently accumulated radiolabel from L-Ala. [3H]Gly to higher levels than were initially present in the incubation medium (overshoot phenomenon). This accumulation was dependent on the presence of an inward-directed (extravesicular greater than intravesicular) Na+ gradient and was osmotically sensitive and linear with respect to microvilli protein concentration. Analysis of intravesicular contents revealed that all 3H uptake from L-Ala. [3H]Gly appeared as free glycine. Hydrolysis studies demonstrated the rate of L-Ala.[3H]Gly hydrolysis to free alanine and [3H[glycine by the microvilli to be greatly in excess of their rate of radiolabel uptake from this dipeptide. In addition, the uptake profiles and kinetic constants for vesicular uptake of radiolabel from L-Ala.[3H]Gly and free glycine were demonstrated to be identical when measured by double-labeling techniques in the same experiments. These results indicate that L-Ala.[3H]Gly is hydrolyzed at the external surface of the microvilli with the [3H]glycine released being transported into the vesicles by a Na+ gradient-dependent system identical to that employed for free glycine. Microvilli vesicle uptake of radiolabel from D-Ala.[3H]Gly exhibited no Na+ dependent "over-shoot" effect. D-Ala.[3H]Gly was completely resistant to microvilli-catalyzed hydrolysis. Analysis of the microvilli for renal dipeptidase, an enzyme with hydrolytic activity against a wide range of L-dipeptides, revealed this enzyme to be enriched in the microvilli vesicles to a degree equivalent to that observed for marker enzymes for renal microvilli. Renal dipeptidase catalyzed hydrolysis of L-Ala.Gly but not D-Ala.Gly, as was the case with microvilli-catalyzed hydrolysis of the dipeptides. With its location in the renal brush border microvilli and its hydrolytic action against L-dipeptides, renal dipeptidase my act at the luminal surface of the proximal tubule cell to hydrolyze L-dipeptides present in the glomerular filtrate, with the resultant free amino acids transported across the brush border microvilli by Na+ gradient-dependent processes.

PubMed Disclaimer

References

    1. Arch Biochem Biophys. 1971 Jan;142(1):378-81 - PubMed
    1. Biochim Biophys Acta. 1971 Aug 20;242(2):446-58 - PubMed
    1. N Engl J Med. 1967 Dec 7;277(23):1219-27 - PubMed
    1. J Biol Chem. 1977 Jan 25;252(2):583-90 - PubMed
    1. Anal Biochem. 1964 Jan;7:18-25 - PubMed

Publication types

LinkOut - more resources