Small-angle X-ray scattering studies on the X-ray aggregation of malate synthase. Computer simulations and models
- PMID: 7210808
- DOI: 10.1515/znc-1980-11-1204
Small-angle X-ray scattering studies on the X-ray aggregation of malate synthase. Computer simulations and models
Abstract
Malate synthase undergoes an X-ray induced aggregation which can be monitored in situ by small-angle X-ray scattering; the analysis of scattering curves, taken at subsequent stages of aggregation, has led to the establishment of a tentative model for an aggregation in two dimensions (Zipper and Durchschlag (1980) Rad. and Environm. Biophys., in press). This model was checked by comparison of appropriate theoretical curves with the experimental curves. The theoretical scattering curves for this comparison were obtained by weighted averaging over the scattering curves calculated for various species of hypothetical aggregates. Based on the approximation of the unaggregated enzyme particle by an oblate cylinder, the aggregates were assumed to be composed of 2, 3, 4 or 6 of such cylinders, associated side-by-side in one and later on in two linear rows. THe weight fractions of the species were chosen so, that an optimum fit of the experimental mean radii of gyration and mean degrees of aggregation was achieved. The distance distribution functions calculated for the model are very similar to the functions derived from the scattering experiment. Cross-section Guinier plots of the scattering curves of the model reveal the occurrence of one and later on of two pseudo cross-section factors similar to those observed in the experimental scattering curves. The pseudo thickness factor of the model of the unaggregated particle is found to be retained in the model curves for all stages of aggregation. From these results it can be concluded that the model for the aggregation process is essentially consistent with the scattering behaviour of the aggregating enzyme. Small differences between the theoretical and experimental curves may be explained by the idealizations of the model. The comparison of theoretical curves for alternative models, assuming aggregation in three dimensions, suggests that these models are unlikely, though small amounts of three-dimensional aggregates cannot be ruled out completely.
Similar articles
-
Small-angle X-ray scattering studies on the X-ray induced aggregation of malate synthase.Radiat Environ Biophys. 1980;18(2):99-121. doi: 10.1007/BF01326049. Radiat Environ Biophys. 1980. PMID: 7454971 No abstract available.
-
A small-angle X-ray scattering study on pre-irradiated malate synthase. The influence of formate, superoxide dismutase, and catalase on the X-ray induced aggregation of the enzyme.Z Naturforsch C Biosci. 1985 May-Jun;40(5-6):364-72. doi: 10.1515/znc-1985-5-614. Z Naturforsch C Biosci. 1985. PMID: 4024705
-
Electrophoretic and chemical studies on the X-ray damage of malate synthase.Z Naturforsch C Biosci. 1981 Jul-Aug;36(7-8):516-33. doi: 10.1515/znc-1981-7-803. Z Naturforsch C Biosci. 1981. PMID: 7025492
-
Molecular structures from low angle X-ray and neutron scattering studies.Int J Biol Macromol. 1998 Feb;22(1):1-16. doi: 10.1016/s0141-8130(97)00088-3. Int J Biol Macromol. 1998. PMID: 9513811 Review.
-
A comparison of X-ray small-angle scattering results to crystal structure analysis and other physical techniques in the field of biological macromolecules.Q Rev Biophys. 1978 Feb;11(1):39-70. doi: 10.1017/s0033583500001918. Q Rev Biophys. 1978. PMID: 345321 Review. No abstract available.
Cited by
-
Post-irradiation inactivation, protection, and repair of the sulfhydryl enzyme malate synthase. Effects of formate, superoxide dismutase, catalase, and dithiothreitol.Radiat Environ Biophys. 1985;24(2):99-111. doi: 10.1007/BF01229815. Radiat Environ Biophys. 1985. PMID: 4011852
-
Quantifying radiation damage in biomolecular small-angle X-ray scattering.J Appl Crystallogr. 2016 May 4;49(Pt 3):880-890. doi: 10.1107/S1600576716005136. eCollection 2016 Jun 1. J Appl Crystallogr. 2016. PMID: 27275138 Free PMC article.
-
Small-angle X-ray scattering studies on the X-ray induced aggregation of malate synthase.Radiat Environ Biophys. 1980;18(2):99-121. doi: 10.1007/BF01326049. Radiat Environ Biophys. 1980. PMID: 7454971 No abstract available.