Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Jan 15;657(1):277-94.
doi: 10.1016/0005-2744(81)90151-0.

The principles of enzyme stabilization. VI. Catalysis by water-soluble enzymes entrapped into reversed micelles of surfactants in organic solvents

The principles of enzyme stabilization. VI. Catalysis by water-soluble enzymes entrapped into reversed micelles of surfactants in organic solvents

K Martinek et al. Biochim Biophys Acta. .

Abstract

1. The possibility of stabilizing water-soluble enzymes against the inactivation action of organic solvents by means of surfactants has been studied. Several enzymes (alpha-chymotrypsin (EC 3.4.21.1), trypsin (EC 3.4.21.4), pyrophosphatase (EC 3.6.1.1), peroxidase (EC 1.11.1.7), lactate dehydrogenase (EC 1.1.1.27) and pyruvate kinase (EC 2.7.1.40)) were used to demonstrate that enzymes can be entrapped into reversed micelles formed by surfactants (Aerosol OT, cetyltrimethylammonium bromide, Brij 56) in an organic solvent (benzene, chloroform, octane, cyclohexane). The enzymes solubilized in this way retain their catalytic activity and substrate specificity. 2. A kinetic theory has been put forward that describes enzymatic reactions occurring in a micelle-solvent pseudobiphasic system. In terms of this theory, an explanation is given for the experimental dependence of the Michaelis-Menten equation parameters on the concentrations of the components of a medium (water, organic solvent, surfactant) and also on the combination of the signs of charges in the substrate molecule and on interphase (++, +-, --). 3. The results obtained by us may prove important for applications of enzymes in organic synthesis and for studying the state and role of water in the structure of biomembranes and active centres of enzymes.

PubMed Disclaimer

LinkOut - more resources