Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Apr 23;290(5808):708-10.
doi: 10.1038/290708a0.

Functionally significant central-pair rotation in a primitive eukaryotic flagellum

Functionally significant central-pair rotation in a primitive eukaryotic flagellum

C K Omoto et al. Nature. .

Abstract

There is now considerable evidence that the basis for ciliary and flagellar movement is an active sliding between peripheral doublet microtubules which, when resisted by structures within the axoneme, leads to axonemal bend formation. In contrast, relatively little is known about the control mechanisms which coordinate the interdoublet sliding and axonemal binding to produce the effective motion observed in various cilia and flagella. One component of the axoneme which may be involved in this control is the central pair of microtubules. To learn more about the action of the central pair, we have studied the tiny uniflagellate marine alga, Micromonas pusilla. The central tubules of the M. pusilla flagellum extend for several micrometres beyond the termination of the peripheral doublets, thus permitting direct observation of the central pair during flagellar movement. Our findings, reported here, indicate that in living M. pusilla the central pair of microtubules undergoes continuous rotation in one direction. This rotation provides the motive force for the cell.

PubMed Disclaimer

Publication types

LinkOut - more resources