Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Mar 3;20(5):1241-5.
doi: 10.1021/bi00508a029.

On the cofactor specificity of glycinamide ribonucleotide and 5-aminoimidazole-4-carboxamide ribonucleotide transformylase from chicken liver

On the cofactor specificity of glycinamide ribonucleotide and 5-aminoimidazole-4-carboxamide ribonucleotide transformylase from chicken liver

G K Smith et al. Biochemistry. .

Abstract

Tests of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and glycinamide ribonucleotide (GAR) transformylase cofactor specificity were conducted with 5-and/or 8-deazafolate analogues formylated at N-10. Several of these compounds were found to serve as cofactors for both the enzymes. The finding that 10-formyl-8-deazafolate can be used by AICAR transformylase eliminates those mechanisms requiring cyclization to a methenyl derivative prior to carbon unit transfer for this transformylase. Surprisingly, a similar analogue, 10-formyl-5,8-deazafolate, is very effective as a cofactor for GAR transformylase in the presence or absence of the trifunctional protein which is required for 5,10-methenyl-H4-folate activity with this transformylase. This finding suggests that the trifunctional protein modulates GAR transformylase cofactor specificity by supplying the active cofactor as the N10-formyl species, possibly through a transport process that avoids its dissociation into solution.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources