Effects of temperature on the transport of galactose in human erythrocytes
- PMID: 722542
- PMCID: PMC1282747
- DOI: 10.1113/jphysiol.1978.sp012471
Effects of temperature on the transport of galactose in human erythrocytes
Abstract
The transport of galactose in human erythrocytes has been resolved recently into a mechanism which involves two asymmetric carriers operating in antiparallel fashion. The effects of temperature on this mediated transport system in the range of 0--25 degrees C show the following features. The Michaelis constants for zero-trans influx and efflux and for equilibrium-exchange efflux, do not vary with temperature. Arrhenius plots of the maximal velocities show breaks between 3 and 15 degrees C with activation energies two- to threefold larger below the break than above it. The relative contribution of the two types of carriers to the total transport rate is not affected by temperature. The kinetic properties of the prevalent type of carriers are analysed in terms of the simple carrier model as formulated by Lieb & Stein (1974). This analysis shows that the relative concentration of the unloaded carrier at the inner interface of the membrane increases upon cooling. The free energy of translocation of the unloaded carrier and the change in entropy involved in this step are significantly larger in the low temperature range (0--5 degrees C) than in the higher range (15--25 degrees C). The results are discussed briefly in terms of possible lipid-protein interaction and the physicochemical nature of the erythrocyte membrane.
Similar articles
-
Galactose transport in human erythrocytes. The transport mechanism is resolved into two simple asymmetric antiparallel carriers.Biochim Biophys Acta. 1978 Jan 4;506(1):119-35. doi: 10.1016/0005-2736(78)90439-x. Biochim Biophys Acta. 1978. PMID: 620020
-
Effects of temperature on the transport of nucleosides in guinea pig erythrocytes.Can J Physiol Pharmacol. 1986 Feb;64(2):193-8. doi: 10.1139/y86-029. Can J Physiol Pharmacol. 1986. PMID: 3697835
-
Two-carrier models for mediated transport. II. Glucose and galactose equilibrium exchange experiments in human erythrocytes as a test for several two-carrier models.Biochim Biophys Acta. 1975 Sep 2;401(3):364-9. doi: 10.1016/0005-2736(75)90236-9. Biochim Biophys Acta. 1975. PMID: 1182144
-
L-Leucine transport in human red blood cells: a detailed kinetic analysis.J Membr Biol. 1981;62(1-2):79-93. doi: 10.1007/BF01870202. J Membr Biol. 1981. PMID: 7277478
-
NMR magnetization-transfer analysis of rapid membrane transport in human erythrocytes.Biophys Rev. 2016 Dec;8(4):369-384. doi: 10.1007/s12551-016-0221-y. Epub 2016 Oct 17. Biophys Rev. 2016. PMID: 28510013 Free PMC article. Review.
Cited by
-
Monocarboxylate transport in erythrocytes.J Membr Biol. 1982;70(2):89-103. doi: 10.1007/BF01870219. J Membr Biol. 1982. PMID: 6764785 Review. No abstract available.
-
Glucose transport in a kinaseless Saccharomyces cerevisiae mutant.J Bacteriol. 1987 Jul;169(7):2932-7. doi: 10.1128/jb.169.7.2932-2937.1987. J Bacteriol. 1987. PMID: 3298207 Free PMC article.
-
Temperature sensitivity of the extraneuronal uptake and metabolism of isoprenaline in the perfused rate heart.Naunyn Schmiedebergs Arch Pharmacol. 1979 Apr;306(3):229-39. doi: 10.1007/BF00507108. Naunyn Schmiedebergs Arch Pharmacol. 1979. PMID: 471076 No abstract available.
-
Kinetics of glucose transport in human erythrocytes.J Physiol. 1983 Jun;339:339-54. doi: 10.1113/jphysiol.1983.sp014720. J Physiol. 1983. PMID: 6887027 Free PMC article.
-
Transmembrane Exchange of Fluorosugars: Characterization of Red Cell GLUT1 Kinetics Using 19F NMR.Biophys J. 2018 Nov 20;115(10):1906-1919. doi: 10.1016/j.bpj.2018.09.030. Epub 2018 Oct 5. Biophys J. 2018. PMID: 30366625 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources