A cleft model for cardiac Purkinje strands
- PMID: 7225512
- PMCID: PMC1327437
- DOI: 10.1016/S0006-3495(81)84902-8
A cleft model for cardiac Purkinje strands
Abstract
Conduction of the action potential in cardiac muscle is complicated by its multicellular structure, with narrow intercellular clefts and cell-to-cell coupling. A model is developed from anatomical data to describe cardiac Purkinje strands of variable diameter and different internal arrangements of cells. The admittance of the model is solved analytically and fit to results of cable analysis. Using the extracted specific membrane and cell electrical parameters (Rm = 13 K omega cm2, Cm = 1.5 mu F/cm2, Ri = 100 mu cm, and Re = 50 omega cm), the model correctly predicted conduction velocity and filling of capacitance at the onset of a voltage step. The analysis permits more complete studies of the factors controlling conduction velocity; for instance, the effect on conduction velocity of a capacity in the longitudinal current circuit is discussed. Predictions of the impedance and phase angle were also made. Measurements of the frequency dependence of phase angle may provide a basis for separating cleft membrane properties from those of the surface membrane and may aid the measurement of nonlinear membrane properties in muscle.
Similar articles
-
Electrical properties of sheep Purkinje strands. Electrical and chemical potentials in the clefts.Biophys J. 1983 Nov;44(2):225-48. doi: 10.1016/S0006-3495(83)84295-7. Biophys J. 1983. PMID: 6360228 Free PMC article. Review.
-
The influence of intercellular clefts on the electrical properties of sheep cardiac Purkinje fibers.Biophys J. 1979 Feb;25(2 Pt 1):217-34. doi: 10.1016/s0006-3495(79)85287-x. Biophys J. 1979. PMID: 262388 Free PMC article.
-
Effect of stretch on conduction velocity and cable properties of cardiac Purkinje fibers.Am J Physiol. 1979 Sep;237(3):C119-24. doi: 10.1152/ajpcell.1979.237.3.C119. Am J Physiol. 1979. PMID: 474741
-
The relation of Vmax to INa, GNa, and h infinity in a model of the cardiac Purkinje fiber.Biophys J. 1979 Mar;25(3):407-20. doi: 10.1016/S0006-3495(79)85312-6. Biophys J. 1979. PMID: 262397 Free PMC article.
-
Repolarisation and frequency in cardiac cells.J Physiol (Paris). 1977;73(7):903-23. J Physiol (Paris). 1977. PMID: 351172 Review. No abstract available.
Cited by
-
Electrical properties of sheep Purkinje strands. Electrical and chemical potentials in the clefts.Biophys J. 1983 Nov;44(2):225-48. doi: 10.1016/S0006-3495(83)84295-7. Biophys J. 1983. PMID: 6360228 Free PMC article. Review.
-
The electrical potential produced by a strand of cardiac muscle: a bidomain analysis.Ann Biomed Eng. 1988;16(6):609-37. doi: 10.1007/BF02368018. Ann Biomed Eng. 1988. PMID: 3228221
-
Experimental study of the conducted action potential in cardiac Purkinje strands.Biophys J. 1983 Oct;44(1):1-8. doi: 10.1016/S0006-3495(83)84272-6. Biophys J. 1983. PMID: 6626674 Free PMC article.
-
Intracellular pH and cell-to-cell transmission in sheep Purkinje fibers.Biophys J. 1989 Jan;55(1):53-65. doi: 10.1016/S0006-3495(89)82780-8. Biophys J. 1989. PMID: 2930825 Free PMC article.
-
Surface capacity of electrically syncytial tissues.Biophys J. 1981 Jul;35(1):127-46. doi: 10.1016/S0006-3495(81)84779-0. Biophys J. 1981. PMID: 7260314 Free PMC article.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials