Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Dec;27(12 Suppl 2):1967-81.
doi: 10.1016/s0026-0495(78)80013-4.

Insulin response in skeletal muscle and fat cells of the genetically obese Zucker rat

Insulin response in skeletal muscle and fat cells of the genetically obese Zucker rat

M P Czech et al. Metabolism. 1978 Dec.

Abstract

Isolated fat cells derived from 10-wk-old Zucker obese rats utilized substantially greater amounts of glucose per cell in the presence or absence of insulin than those from lean rats. Initial rates of deoxyglucose or 3-0-methylglucose uptake in fat cells from Zucker obese rats were also 5--10 times greater than those observed in cells from lean rats. However, while 240 microU/ml insulin elicited a maximal response in fat cells from lean rats, this dose of hormone was only about 50% as effective as 24 microU/ml insulin in stimulating glucose metabolism or hexose transport in obese rat cells. This apparent rightward shift in the dose response-relationship could not be adequately explained on the basis of decreased insulin receptors since (125I-) insulin binding per fat cell was increased 2.5--3-fold in obesity, while receptor density on the cell surface in obesity was decreased only slightly. Soleus muscles from obese Zucker rats exhibited decreased basal rates of D(5-3H)glucose conversion to glycogen and H2O compared to those of lean controls. While the percent increase in glucose metabolism due to a supermaximal dose of insulin was similar in soleus muscles of lean and obese Zucker rats, a blunted response to a submaximal insulin dose was observed in muscles from the latter animals. This rightward shift in the dose-response relationship was also observed when deoxyglucose uptake was monitored in soleus muscles from obese rats. Binding of (1251-) insulin to soleus muscles at a medium concentration of 57 microU/ml was significantly decreased in obese compared to lean rats. We conclude that (1) fat cells do not contribute to the insulin resistance of 10-wk obese Zucer rats since glucose utilization is higher in these cells at all concentrations of insulin tested, (2) obese Zucker rat soleus muscle metabolism is defective in two respects--imparied basal glucose utilization and a rightward shift in the insulin dose-response relationship with respect to hexose transport, and (3) this latter defect involving decreased sensitivity of muscle to insulin appears to result from a marked decrease in cell surface receptors for the hormone.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources