Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Jun;76(6):493-7.
doi: 10.1111/1523-1747.ep12521202.

Directional variations of mechanical parameters in rat skin depending on maturation and age

Free article

Directional variations of mechanical parameters in rat skin depending on maturation and age

H G Vogel. J Invest Dermatol. 1981 Jun.
Free article

Abstract

Mechanical properties of rat back skin at low loads and at failure were studied in 2 directions, e.g., perpendicular and longitudinal to body axis beginning with early maturation (from 1 week onwards) until senescence (at 24 mo). Anisotropic behavior, known for human skin, has also been found in rats. Surprisingly, the changes due to maturation and aging were not the same for one area of skin regardless of the direction. Ultimate extension was more influenced by the aging process in samples perpendicular to the body axis than in those parallel to body axis. Elongation at zero load, that means load not measurable under the described conditions, was higher in the longitudinal samples than in the perpendicular ones in young and very old animals, whereas this difference was absent in mature animals. In contrast, ultimate load, tensile strength and modulus of elasticity were higher in perpendicular samples than in samples longitudinal to the body axis for young and very old, but not for mature animals. Elongation at low loads or low stresses shows a different pattern than at medium loads or medium stresses when both directions are compared. Apparently, elements contributing to the mechanical properties in the various directions are differently influenced by the maturation and aging processes. Moreover, the elements contributing to the changes at low loads react differently to the aging process from those responsible for the effects at medium and high loads.

PubMed Disclaimer

LinkOut - more resources