Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Aug;58(2):309-16.

Studies of human pluripotential hemopoietic stem cells (CFU-GEMM) in vitro

  • PMID: 7248524
Free article

Studies of human pluripotential hemopoietic stem cells (CFU-GEMM) in vitro

R C Ash et al. Blood. 1981 Aug.
Free article

Abstract

An in vitro clonal assay for a class of human hemopoietic progenitors (CFU-GEMM) with several characteristics of pluripotential stem cells has been previously described. In the presence of medium conditioned by leukocytes stimulated with phytohemagglutinin (PHA-LCM) and erythropoietin (Ep), CFU-GEMM give rise to mixed hemopoietic colonies containing granulocytic, erythroid, monocyte-macrophage, and megakaryocytic elements. In initial studies we found that CFU-GEMM were present in equal but low frequencies in blood (B) and bone marrow (M) mononuclear cell populations. However, when the culture system was modified by the substitution of Iscove's modified Dulbecco's medium for alpha-MEM and the addition of mercaptoethanol, a significant enhancement of mixed colony formation occurred, and an approximately 3-4-fold difference in the frequency of CFU-GEMM between B and M emerged. Replating studies showed the formation of secondary differentiated hemopoietic colonies and at least a limited capacity for self-renewal of CFU-GEMM. The in vitro growth of normal CFU-GEMM was highly dependent on hemopoietin(s) present in PHA-LCM. In vitro detection of CFU-GEMM, however, requires only relatively low permissive concentrations of Ep, in contrast to the high Ep requirement for optimal BFU-E growth in vitro. These and other data described demonstrate CFU-GEMM to be a distinct multipotential stem cell class whose assay may prove useful in the study of human blood dyscrasias.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources