Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells
- PMID: 7260275
- PMCID: PMC1328733
- DOI: 10.1016/S0006-3495(80)85093-4
Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells
Abstract
An experimental procedure is demonstrated which can be used to determine the interfacial free energy density for red cell membrane adhesion and membrane elastic properties. The experiment involves micropipet aspiration of a flaccid red blood cell and manipulation of the cell proximal to a surface where adhesion occurs. A minimum free energy method is developed to model the equilibrium contour of unsupported membrane regions and to evaluate the partial derivatives of the total free energy, which correspond to the micropipet suction force and the interfacial free energy density of adhesion. It is shown that the bending elasticity of the red cell membrane does not contribute significantly to the pressure required to aspirate a flaccid red cell. Based on experimental evidence, the upper bound for the bending or curvature elastic modulus of the red cell membranes is 10-12 ergs (dyn-cm). Analysis of the adhesion experiment shows that interfacial free energy densities for red cell adhesion can be measured from a lower limit of 10-4 ergs/cm2 to an upper limit established by the membrane tension for lysis of 5-10 ergs/cm2.
Similar articles
-
Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests.Biophys J. 1983 Jul;43(1):27-30. doi: 10.1016/S0006-3495(83)84319-7. Biophys J. 1983. PMID: 6882860 Free PMC article.
-
Affinity of red blood cell membrane for particle surfaces measured by the extent of particle encapsulation.Biophys J. 1981 Apr;34(1):1-12. doi: 10.1016/S0006-3495(81)84834-5. Biophys J. 1981. PMID: 7213927 Free PMC article.
-
Analysis of adhesion of large vesicles to surfaces.Biophys J. 1980 Sep;31(3):425-31. doi: 10.1016/S0006-3495(80)85069-7. Biophys J. 1980. PMID: 7260296 Free PMC article.
-
Structure and deformation properties of red blood cells: concepts and quantitative methods.Methods Enzymol. 1989;173:3-35. doi: 10.1016/s0076-6879(89)73003-2. Methods Enzymol. 1989. PMID: 2674613 Review.
-
The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.Bioelectrochemistry. 2004 May;62(2):107-13. doi: 10.1016/j.bioelechem.2003.08.002. Bioelectrochemistry. 2004. PMID: 15039011 Review.
Cited by
-
Transient anchorage of cross-linked glycosyl-phosphatidylinositol-anchored proteins depends on cholesterol, Src family kinases, caveolin, and phosphoinositides.J Cell Biol. 2006 Oct 9;175(1):169-78. doi: 10.1083/jcb.200512116. J Cell Biol. 2006. PMID: 17030987 Free PMC article.
-
Use of cell contour analysis to evaluate the affinity between macrophages and glutaraldehyde-treated erythrocytes.Biophys J. 1987 Aug;52(2):177-86. doi: 10.1016/S0006-3495(87)83205-8. Biophys J. 1987. PMID: 3117125 Free PMC article.
-
Interaction between bending and tension forces in bilayer membranes.Biophys J. 1988 Oct;54(4):743-6. doi: 10.1016/S0006-3495(88)83010-8. Biophys J. 1988. PMID: 3224154 Free PMC article.
-
A model for cochlear outer hair cell deformations in micropipette aspiration experiments: an analytical solution.Ann Biomed Eng. 1996 Jul-Aug;24(4):241-9. doi: 10.1007/BF02648116. Ann Biomed Eng. 1996. PMID: 8841728
-
A two phase field model for tracking vesicle-vesicle adhesion.J Math Biol. 2016 Nov;73(5):1293-1319. doi: 10.1007/s00285-016-0994-4. Epub 2016 Mar 24. J Math Biol. 2016. PMID: 27012231
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources