Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981;81(4):519-35.
doi: 10.1007/BF00285847.

Synaptosomal complex analysis of mouse chromosomal rearrangements. II. Synaptic adjustment in a tandem duplication

Synaptosomal complex analysis of mouse chromosomal rearrangements. II. Synaptic adjustment in a tandem duplication

M J Moses et al. Chromosoma. 1981.

Abstract

Surface spread spermatocytes of mice heterozygous for a tandem duplication show nuclei in late zygotene-early pachytene in which the heteromorphic synaptonemal complex (SC) contains a lateral element that is buckled out into a unpaired loop as a consequence of the added length of the duplication (estimated in another study to be 21.7%, with breakpoints at 0.50 and 0.72 of the length of the chromosome). The ends of the buckle, marking the interstitial termini of synapsis proceeding from opposite directions, vary over a wide range of positions, but within limits: the proximal end of the loop does not exceed the distal end of the duplication segment, while the distal end of the loop does not lie closer to the kinetochore than the proximal end of the segment. Thus synapsis (SC formation) at zygotene is restricted to homologous regions (exclusive homosynapsis). --In the last half of pachytene, no buckles are found, only simple SCs with lateral elements of equal length, as a consequence of synaptic adjustment. Intermediate stages of adjustment are found throughout the first half of pachytene. Shortly after homosynapsis is complete, synaptic adjustment begins: the ends of the duplication loop separate (desynapsis of homosynapsed regions); the long axis shortens with respect to the short axis in both the unpaired loop and in the SC portions; asymmetrical twists take up inequalities; the loop is reduced to from 1 to 3 asymmetrical twists; the axes (lateral elements) equalize as the long axis shortens; and a simple SC is formed, indistinguishable from others in the complement, in which the region of the duplication and those adjacent to it have heterosynapsed, while the distal regions of the SC are presumably still homosynapsed. Synaptic adjustment evidently involves two sequential events: localized instability of the homosynapsed condition, leading to desynapsis, then restoration of the SC by heterosynapsis. Adjustment therefore represents the loss of strict homosynapsis. It is concluded that the asymmetry produced by the duplication loop constitutes an instability that triggers synaptic adjustment.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Philos Trans R Soc Lond B Biol Sci. 1977 Mar 21;277(955):277-94 - PubMed
    1. Chromosoma. 1980;76(1):1-22 - PubMed
    1. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2843-6 - PubMed
    1. Proc Natl Acad Sci U S A. 1962 Feb;48:165-72 - PubMed
    1. Chromosoma. 1977 Apr 20;60(4):345-75 - PubMed

Publication types