Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Jul;117(2):389-94.
doi: 10.1111/j.1432-1033.1981.tb06350.x.

Effect of funiculosin and antimycin A on the redox-driven H+-pumps in mitochondria: on the nature of "leaks'

Free article

Effect of funiculosin and antimycin A on the redox-driven H+-pumps in mitochondria: on the nature of "leaks'

D Pietrobon et al. Eur J Biochem. 1981 Jul.
Free article

Abstract

The effect of antimycin A and funiculosin, two inhibitors which block electron transfer in the b-c1 complex, on electron flow and electrochemical potential difference of H+ ions in mitochondria at static head (state 4) is investigated. In addition, the respiratory control ratio is determined as the ratio between uncoupler stimulated and static-head electron flow. Malonate, a competitive inhibitor or succinic dehydrogenase, is used for comparison. All three inhibitors cause an extensive depression of static-head electron flow but only a limited decrease in the electrochemical potential difference of H+ ions. With the antimycin-type of inhibitors, the respiratory control ratio slightly increases up to about 50% inhibition of electron flow and then steeply declines. With malonate, a strong decrease of the respiratory control ratio is observed in a concentration range where the electron flow is inhibited less than 10%. It is shown than the data do not comply with the generally accepted hypothesis of a leak conductance being regulated by the electrochemical potential difference of H+ ions. They can be interpreted in terms of not tightly coupled redox-driven H+-pumps. A non-vanishing electron flow at static head then arises predominantly from molecular slipping in the pumps, and the (constant) leak conductance yields only a minor contribution.

PubMed Disclaimer

LinkOut - more resources