Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Dec 12;17(25):5474-84.
doi: 10.1021/bi00618a023.

Acetylcholine receptor and ionic channel of Torpedo electroplax: binding of perhydrohistrionicotoxin to membrane and solubilized preparations

Acetylcholine receptor and ionic channel of Torpedo electroplax: binding of perhydrohistrionicotoxin to membrane and solubilized preparations

M E Eldefrawi et al. Biochemistry. .

Abstract

The electric organ of the ray, Torpedo ocellata, can serve as a source for both the acetylcholine (ACh) receptor and its ionic channel. The two entities were identified by their specific binding of [3H]ACh and [3H]perhydrohistrionicotoxin ([3H]H12-HTX), respectively. Binding of [3H]H12-HTX was inhibited by certain drugs and toxins, e.g., histrionicotoxin (HTX), amantadine, and tetraethylammonium (TEA) ions at concentrations that did not inhibit [3H]ACh binding. However, the specific carbamoylcholine-induced 22Na efflux from microsacs from the electric organ membranes was blocked by inhibitors of either the receptor or its ionic channel. The ionic channel had the properties of a protein as judged by heat sensitivity and the inhibition of [3H]H12-HTX binding, after incubation of the electric organ membranes with protein reagents such as p-chloromercuribenzenesulfonic acid (PCMBS) or N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). The "binding" of [3H]H12-HTX at 4 X 10(-8) M to lipids in the microsacs was 12% of the total binding to intact microsacs and was nonsaturable and insensitive to heat or specific drugs. After solubilization with cholate, the [3H]H12-HTX binding subunits retained the same affinities for toxins and drugs. The Kd for [3H]H12-HTX was 3 X 10(-7) M. The majority of the ionic channel could be separated from the ACh receptors in the cholate extract by incubation with ACh-receptor affinity gel and ACh-receptor antibodies. The ACh receptor purified by this affinity gel contained only a few active ionic channel units as judged by low levels of high affinity binding of [3H]H12-HTX. On the other hand, after solubilization with Triton X-100, all the ionic channel molecules were either separated or denatured so that the purified ACh receptor did not exhibit high affinity binding for [3H]H12-HTX.

PubMed Disclaimer

Similar articles

Cited by

Publication types