Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Nov 18;678(1):115-21.
doi: 10.1016/0304-4165(81)90054-4.

The disposition of citric acid cycle intermediates by isolated rat heart mitochondria

The disposition of citric acid cycle intermediates by isolated rat heart mitochondria

J K Hiltunen et al. Biochim Biophys Acta. .

Abstract

The mechanism of depletion of tricarboxylic acid cycle intermediates by isolated rat heart mitochondria was studied using hydroxymalonate (an inhibitor of malic enzymes) and mercaptopicolinate (an inhibitor of phosphoenolpyruvate carboxykinase) as tools. Hydroxymalonate inhibited the respiration rate of isolated mitochondria in state 3 by 40% when 2 mM malate was the only external substrate, but no inhibition was found with 2 mM malate plus 0.5 mM pyruvate as substrates. In the presence of bicarbonate, arsenite and ATP propionate was converted to pyruvate and malate at the rates of 14.0 +/- 2.9 and 2.8 +/- 1.8 nmol/mg protein in 5 min, respectively. Under these conditions, 0.1 mM mercaptopicolinate did not affect this conversion, but 2 mM hydroxymalonate inhibited pyruvate formation completely and resulted in an accumulation of malate up to 13.2 +/- 2.9 nmol/mg protein. No accumulation of phosphenolpyruvate was found under any condition tested. It is concluded that malic enzymes but not phosphoenolpyruvate carboxykinase, are involved in conversion of propionate to pyruvate in isolated rat heart mitochondria.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources