Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Jun:49:311-39.
doi: 10.1242/jcs.49.1.311.

Mechanisms of nutritive endocytosis. I. Phagocytic versatility and cellular recognition in Chlorohydra digestive cells, a scanning electron microscope study

Mechanisms of nutritive endocytosis. I. Phagocytic versatility and cellular recognition in Chlorohydra digestive cells, a scanning electron microscope study

P L McNeil. J Cell Sci. 1981 Jun.

Abstract

The quantity of surface membrane internalized during phagocytosis by Chlorohydra digestive cells was estimated for a range of particle types. Challenge with 2 of these particles, freshly isolated symbiotic algae (FIS) and latex spheres (LS), resulted in a greater (2.5 X) quantity of surface membrane interiorized than with heat-treated symbiotic algae (HTS) and free living algae (FA), Chlorella vulgaris. This discriminatory process was investigated further by a scanning electron microscope (SEM) and transmission electron microscope (TEM) comparison of the surface events associated with phagocytosis of each of these 4 particles. Those particles that were avidly phagocytized, FIS and LS, were both enveloped by a tightly fitting extension of digestive-cell surface, and obtained a prominent surface coating after their injection into the gut of Chlorohydra. Phagocytic challenge with FIS resulted, furthermore, in the rapid formation of a dense microvillar cover on digestive-cell surfaces. HTS and FA, on the other hand, were enveloped by a less closely fitting extension of digestive-cell surface, did not obtain a prominent surface coating, and did not induce the formation of microvilli. In addition, SEM revealed that at least 3 morphologically distinct phagocytic modes were utilized by the versatile nutritive phagocyte of Chlorohydra: (I) envelopment by the progressive movement of numerous, overlapping tubular protrusions (microvilli) over the particle (FIS) surface, forming first a network of tubular interlocking members, and finally a continuous but rough enclosing surface; (2) envelopment by a single, smooth-surfaced, funnel-like extension of digestive-cell surface (FIS, LS, HTS, FA); and (3) envelopment by multiple, broad folds, often of unequal size, and with overlapping margins (Artemia particles).

PubMed Disclaimer

Publication types

LinkOut - more resources