Some suggestions for measuring predictive performance
- PMID: 7310648
- DOI: 10.1007/BF01060893
Some suggestions for measuring predictive performance
Abstract
The performance of a prediction or measurement model is often evaluated by computing the correlation coefficient and/or the regression of predictions on true (reference) values. These provide, however, only a poor description of predictive performance. The mean square prediction error (precision) and the mean prediction error (bias) provide better descriptions of predictive performance. These quantities are easily computed, and can be used to compare prediction methods to absolute standards or to one another. The measures, however, are unreliable when the reference method is imprecise. The use of these measures is discussed and illustrated.
Similar articles
-
Analytical approximations of sensitivities of steady state predictions to errors in parameter estimation.J Pharmacokinet Biopharm. 1982 Oct;10(5):559-74. doi: 10.1007/BF01059038. J Pharmacokinet Biopharm. 1982. PMID: 7166739
-
IMI - Oral biopharmaceutics tools project - Evaluation of bottom-up PBPK prediction success part 4: Prediction accuracy and software comparisons with improved data and modelling strategies.Eur J Pharm Biopharm. 2020 Nov;156:50-63. doi: 10.1016/j.ejpb.2020.08.006. Epub 2020 Aug 14. Eur J Pharm Biopharm. 2020. PMID: 32805361
-
Modeling and Prediction of Solvent Effect on Human Skin Permeability using Support Vector Regression and Random Forest.Pharm Res. 2015 Nov;32(11):3604-17. doi: 10.1007/s11095-015-1720-4. Epub 2015 Jun 2. Pharm Res. 2015. PMID: 26033768
-
Toward the practical implementation of eye-related bioavailability prediction models.Drug Discov Today. 2014 Jan;19(1):31-44. doi: 10.1016/j.drudis.2013.08.002. Epub 2013 Aug 13. Drug Discov Today. 2014. PMID: 23948143 Review.
-
Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures.J Pharm Pharm Sci. 2008;11(1):32-58. doi: 10.18433/j3pp4k. J Pharm Pharm Sci. 2008. PMID: 18445363 Review.
Cited by
-
Application of ED-optimality to screening experiments for analgesic compounds in an experimental model of neuropathic pain.J Pharmacokinet Pharmacodyn. 2012 Dec;39(6):673-81. doi: 10.1007/s10928-012-9278-9. Epub 2012 Nov 30. J Pharmacokinet Pharmacodyn. 2012. PMID: 23197247
-
Personalized Prediction of Psychosis: External Validation of the NAPLS-2 Psychosis Risk Calculator With the EDIPPP Project.Am J Psychiatry. 2016 Oct 1;173(10):989-996. doi: 10.1176/appi.ajp.2016.15121565. Epub 2016 Jul 1. Am J Psychiatry. 2016. PMID: 27363511 Free PMC article.
-
Population pharmacokinetics and pharmacogenetics of everolimus in renal transplant patients.Clin Pharmacokinet. 2012 Jul 1;51(7):467-80. doi: 10.2165/11599710-000000000-00000. Clin Pharmacokinet. 2012. PMID: 22624503
-
Population Pharmacokinetics and Pharmacogenetics Analysis of Rilpivirine in HIV-1-Infected Individuals.Antimicrob Agents Chemother. 2016 Dec 27;61(1):e00899-16. doi: 10.1128/AAC.00899-16. Print 2017 Jan. Antimicrob Agents Chemother. 2016. PMID: 27799217 Free PMC article.
-
Population pharmacokinetics of gentamicin. Use of the nonparametric expectation maximisation (NPEM) algorithm.Clin Pharmacokinet. 1992 Jul;23(1):62-8. doi: 10.2165/00003088-199223010-00005. Clin Pharmacokinet. 1992. PMID: 1617859
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Other Literature Sources
Medical