Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Nov 24;20(24):6803-9.
doi: 10.1021/bi00527a010.

Acyl chain order and lateral domain formation in mixed phosphatidylcholine--sphingomyelin multilamellar and unilamellar vesicles

Acyl chain order and lateral domain formation in mixed phosphatidylcholine--sphingomyelin multilamellar and unilamellar vesicles

B R Lentz et al. Biochemistry. .

Abstract

The phase behavior of mixtures of dimyristoylphosphatidylcholine (DMPC) with N-palmitoylsphingosinephosphorylcholine (C16SHP) has been investigated in both small unilamellar and large multilamellar vesicles. The steady-state fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) has been used to detect temperature-induced structural changes in these membranes. In addition, electron microscopy has revealed vastly different fracture-face morphologies for large multilamellar vesicles "jet-frozen" from different temperatures. These data have been interpreted in terms of proposed phase diagrams for this lipid mixture. The shapes of the proposed phase diagrams have led us to conclude that phosphatidylcholine and sphingomyelin species of similar acyl chain length mix freely in both highly curved and uncurved bilayers, except at temperatures at which both lipids are in low-temperature, ordered phases. In addition, the similarity of these phase diagrams to phase diagrams for analogous mixtures of pure phosphatidylcholines suggested that sphingomyelin and phosphatidylcholine suggested that sphingomyelin and phosphatidylcholine species might substitute for each other in supporting the lamellar phase necessary for each other in supporting the lamellar phase necessary to cell membrane structure. Finally, the anisotropy of DPH fluorescence was found to be essentially invariant with sphingomyelin content at temperatures just above and below the solid--liquid phase separation in small unilamellar vesicles. This demonstrates that the sphingomyelin backbone, per se, does not order the membrane bilayer. These results are discussed in terms of the possible role of sphingomyelin in controlling acyl chain order within mammalian cell membranes.

PubMed Disclaimer

Similar articles

Cited by

Publication types