Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981:319:165-78.
doi: 10.1113/jphysiol.1981.sp013899.

Sodium dependency of active chloride transport across isolated fish skin (Gillichthys mirabilis)

Sodium dependency of active chloride transport across isolated fish skin (Gillichthys mirabilis)

W S Marshall. J Physiol. 1981.

Abstract

1. The effects of thiocyanate, ouabain, ion-substituted Ringer solution and electrochemical gradients on Na+ and Cl- transport were examined using the isolated skin of the marine teleost, Gillichthys mirabilis. 2. Bilateral replacement of Na+ with choline in the bathing solutions reduces net Cl- flux by 93%, indicating that active Cl- transport by the skin is Na-dependent. 3. Thiocyanate inhibits short-circuit current with an ED50 of 6.4 x 10(-4)M, and, at 10(-2)M, decreases Cl-efflux, influx, net flux and short-circuit current by 68, 33, 74 and 81%, respectively. 4. Ouabain (10(-5)M) reduces Cl- efflux and net flux by 56 and 86%, respectively, indicating that the Cl- transport requires Na,K-ATPase. 5. Subsequent addition of thiocyanate to ouabain-treated skin reduces Cl- efflux, net flux and short-circuit current, suggesting that the two agents operate at different sites involved in Cl- transport. 6. Unilateral substitution of gluconate for Cl- on the serosal side does not affect Cl- influx, indicating that Cl- passive transport is via Fickean diffusion, not Cl-Cl exchange diffusion. 7. The addition of NaCl to the mucosal side, which mimics the in vivo sea-water condition, increases Cl- influx and transepithelial potential and decreases tissue resistance. The net flux (secretion) of Cl- with hypertonic saline on the mucosal side (0.51 +/- 0.06 muequiv/cm2 . hr) demonstrates that the skin could secrete Cl- in vivo. 8. Na+ fluxes across the skin are passive, as the observed flux ration (efflux/influx) is similar to that predicted by the Ussing-Teorell equation under both closed- and open-circuit conditions. 9. The permeability ratio (PNa:PCl) in approximately 5.4:1.0, indicating that the skin is more permeable to Na+, and that at least part of the serosa-positive transepithelial potential may be a Na+ diffusion potential. 10. The results suggest that Cl- secretion by Gillichthys skin is secondary active transport involving Na,K-ATPase and serosal Na+.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Gen Physiol. 1974 Aug;64(2):148-65 - PubMed
    1. Gen Comp Endocrinol. 1981 Apr;43(4):484-91 - PubMed
    1. Fortschr Zool. 1975;23(2-3):322-62 - PubMed
    1. J Exp Biol. 1975 Dec;63(3):587-602 - PubMed
    1. J Exp Zool. 1977 Mar;199(3):419-26 - PubMed

Publication types

LinkOut - more resources