Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Feb;2(1):87-96.
doi: 10.1016/0165-0270(80)90047-3.

Design of a single electrode voltage clamp

Design of a single electrode voltage clamp

M Merickel. J Neurosci Methods. 1980 Feb.

Abstract

The detailed schematic diagrams and construction techniques are presented for a single microelectrode voltage clamp. The devices is used to study the membrane processes of small cells not able to be penetrated with the traditional two microelectrode system. The technique utilizes the same microelectrode alternately for current injection and membrane potential sampling on a time-sharing basis controlled by electronic switching circuitry. Current is injected in pulses and the membrane potential is sampled after an individual current pulse discharges from the microelectrode capacitance to the true membrane potential. The device can either measure the voltage response to an injected current waveform (current injection mode) or the membrane currents generated during a controlled change in membrane potential (voltage clamp mode). In voltage clamp mode, the membrane potential reaches steady-state within 2 msec (maximum time) in response to a 40 mV step command. The single electrode voltage clamp is potentially very important to the investigation of slow current processes within electrically excitable cells too small to be previously studied with traditional voltage clamp technology.

PubMed Disclaimer

LinkOut - more resources