Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1980 Feb 1;151(2):328-46.
doi: 10.1084/jem.151.2.328.

Failure to trigger the oxidative metabolic burst by normal macrophages: possible mechanism for survival of intracellular pathogens

Comparative Study

Failure to trigger the oxidative metabolic burst by normal macrophages: possible mechanism for survival of intracellular pathogens

C B Wilson et al. J Exp Med. .

Abstract

As previously reported, normal human monocytes (11) and activated mouse macrophages (9) are able to kill or inhibit intracellular replication of Toxoplasma that are not antibody coated, whereas normal human and mouse macrophages are not (7, 9). Each of these types of mononuclear phagocytes is able to kill antibody-coated Toxoplasma. In our studies, phagocytosis of antibody-coated Toxoplasma stimulated the respiratory burst by each of these types of mononuclear phagocytes, whereas phagocytosis of organisms that were not antibody coated stimulated the respiratory burst only by human monocytes and by activated mouse macrophages. Phagocytosis of Toxoplasma did not inhibit production of reactive oxygen metabolites by normal macrophages; rather, it failed to stimulate their production. Killing of Toxoplasma by monocytes from a child with X-linked chronic granulomatous disease and his heterozygote mother was impaired. Thus, reactive oxygen metabolites, perhaps in conjunction with lysosomal contents, appear to be first-line mechanisms whereby mononuclear phagocytes kill this organism. We were not able to determine the exact mechanisms whereby mononuclear phagocytes inhibit the replication of those Toxoplasma that were not killed, although both oxygen-dependent and other nonlysosomal mechanisms may be involved. The differences we observed in oxidative response to phagocytosis of Toxoplasma appear to be one determinant of the antimicrobial activity of these cells and may account for the ability of some intracellular pathogens to survive within phagocytes. These differences may be membrane related. Further studies of Toxoplasma membranes, phagocyte membrane receptors for Toxoplasma, and membrane-related mechanisms for activation of the respiratory burst are needed to define their true basis.

PubMed Disclaimer

Similar articles

Cited by

References

    1. N Engl J Med. 1968 May 2;278(18):971-6 - PubMed
    1. J Clin Invest. 1969 Oct;48(10):1895-904 - PubMed
    1. J Cell Biol. 1970 Jul;46(1):97-105 - PubMed
    1. Science. 1972 Mar 3;175(4025):1010-1 - PubMed
    1. J Exp Med. 1972 Nov 1;136(5):1157-72 - PubMed

Publication types