Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Feb 19;19(4):679-83.
doi: 10.1021/bi00545a011.

Structure of cytochalasins and cytochalasin B binding sites in human erythrocyte membranes

Structure of cytochalasins and cytochalasin B binding sites in human erythrocyte membranes

A L Rampal et al. Biochemistry. .

Abstract

Twenty cytochalasins were tested for binding to and for inhibition of glucose transport in human erythrocyte membrane. In this membrane three cytochalasin B (CB) binding sites have been identified. All but three of the cytochalasins bind at site II. On the other hand, only nine of them, which are structurally closely related, bind at site I and inhibit glucose transport. For site I (and site III) binding and glucose transport inhibitory activities (a) the macrocyclic ring in the cytochalasin molecule must be at least 13-membered, (b) the nature of the aromatic ring at C-10 is not important, (c) the C-20-C-23 region makes a major contribution, and (d) the C-5-C-7 segment has a relatively minor influence. These findings do not support a proposed mechanism which involves 24, C-23, C-20, and C-1 oxygen atoms for interaction of CB with glucose carrier. The structural requirements for site II activity are less stringent. The size and the structure of the macrocyclic ring and the nature of the aromatic residue at C-10 modulate this activity only slightly, if at all. Modifications in the C-5-C-7 region of the molecule, however, result in substantial changes in this activity.

PubMed Disclaimer

Publication types