Testing carrier models of cotransport using the binding kinetics of non-transported competitive inhibitors
- PMID: 7356998
- DOI: 10.1016/0005-2736(80)90361-2
Testing carrier models of cotransport using the binding kinetics of non-transported competitive inhibitors
Abstract
The kinetic equations representing the binding of a non-transported competitive inhibitor are derived from three variations of the carrier model of cotransport. These are (a) the model in which the binding sequence of activator and substrate is random (random bi-bi); (b) the model in which activator must bind before substrate (ordered bi-bi, activator essential), and (c) the model in which substrate must bind before activator (ordered bi-bi, activator non-essential). In general it is found that the kinetic equations for inhibitor binding are considerably simpler and easier to test than the corresponding transport equations. The effect of trans-inhibitor, transported substrate, activator concentration and membrane potential on inhibitor binding are examined in some detail. The use of these results to test and characterize the three transport models is emphasized. Applications to transport mechanisms which are not of the mobile carrier type are also discussed. A summary of relevant experimental data interpreted in terms of the theoretical models concludes the paper.
Similar articles
-
Kinetic analysis of a family of cotransport models.Biochim Biophys Acta. 1981 Dec 7;649(2):269-80. doi: 10.1016/0005-2736(81)90415-6. Biochim Biophys Acta. 1981. PMID: 7317398
-
General rate equations and rejection criteria for the rapid equilibrium carrier model of cotransport.Biochim Biophys Acta. 1982 Aug 12;689(3):444-50. doi: 10.1016/0005-2736(82)90301-7. Biochim Biophys Acta. 1982. PMID: 7126559
-
Kinetic features of cotransport mechanisms under isotope exchange conditions.Membr Biochem. 1981;4(1):11-29. doi: 10.3109/09687688109065420. Membr Biochem. 1981. PMID: 7012543
-
The thermostatics and thermodynamics of cotransport.Biochim Biophys Acta. 1984 Nov 21;778(1):155-75. doi: 10.1016/0005-2736(84)90459-0. Biochim Biophys Acta. 1984. PMID: 6093878 Review.
-
Secondary active nutrient transport in membrane vesicles: theoretical basis for use of isotope exchange at equilibrium and contributions to transport mechanisms.Biochem Soc Symp. 1985;50:151-68. Biochem Soc Symp. 1985. PMID: 3915868 Review.
Cited by
-
Transport of L-cysteine by rat renal brush border membrane vesicles.J Membr Biol. 1983;73(1):25-37. doi: 10.1007/BF01870338. J Membr Biol. 1983. PMID: 6864766
-
Microscopic description of voltage effects on ion-driven cotransport systems.J Membr Biol. 1986;91(3):275-84. doi: 10.1007/BF01868820. J Membr Biol. 1986. PMID: 2427727
-
Kinetic mechanisms of inhibitor binding: relevance to the fast-acting slow-binding paradigm.Biophys J. 1999 Jul;77(1):173-88. doi: 10.1016/S0006-3495(99)76880-3. Biophys J. 1999. PMID: 10388748 Free PMC article.
-
Generalized kinetic analysis of ion-driven cotransport systems: a unified interpretation of selective ionic effects on Michaelis parameters.J Membr Biol. 1984;77(2):123-52. doi: 10.1007/BF01925862. J Membr Biol. 1984. PMID: 6708088
-
Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells: II. Comparison with transport models.J Membr Biol. 1986;94(2):117-27. doi: 10.1007/BF01871192. J Membr Biol. 1986. PMID: 3560198
MeSH terms
LinkOut - more resources
Full Text Sources