Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Feb 17;184(1):23-40.
doi: 10.1016/0006-8993(80)90585-5.

The presynaptic grid: a new approach

The presynaptic grid: a new approach

G Vrensen et al. Brain Res. .

Abstract

A new electron microscopic facility is described which enables systematic visualization of E-PTA-stained presynaptic grids in full en face position. This EM-facility is used to analyze the size and the number of dense projections of synaptic grids in different brain areas of the rabbit. The observations support the view that dense projections form an intrinsic part of all central synapses and are organized in a hexagonal or triangular pattern. The observation of annulate and horseshoe-shaped synaptic grids is in agreement with previous observations on synaptic connections with subsynaptic plate perforations. A non-normal frequency distribution of dense projections per synaptic grid with distinct peaks is suggestive for the existence of distinct size classes of synaptic contacts. Analyses of the frequency distribution of dense projections in different areas and at different levels below the pial surface in adult animals point to a specificity of the distinct size classes related to the afferent origin or the target cell they are projecting on. Investigation of grid size and number of dense projections during a period of rapid synaptogenesis reveals that newly formed synapses also have a specific size. The complementarity of dense projections and vesicle attachment sites implicit in the model of Akert et al. has been used to calculate the number of vesicle attachment sites per sq. micrometer on account of the density of projections per grid. The agreement between our values and those of Akert and Peper, based on the analyses of vesicle attachment sites in freeze-etch specimen, is striking. The possible implications of these observations in relation to synaptic efficacy and neuronal microcicuitry are discussed.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources