Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Apr 7;187(1):165-82.
doi: 10.1016/0006-8993(80)90502-8.

Extracellular calcium and potassium changes in hippocampal slices

Extracellular calcium and potassium changes in hippocampal slices

C Benninger et al. Brain Res. .

Abstract

Ca2+ and K+ ion sensitive microelectrodes were used to measure changes in ionic activities in the CA1 region of hippocampal slices during orthodromic (stratum radiatum) stimulation. Baseline levels of [K+]o and [Ca2+]o were those of the bathing medium which contained 5 mM K+ and 2.0 mM Ca2+. During stimulation [K+]o rose to maximal levels of 12 mM while [Ca2+]o decreased to as low as 1.4 mM. Systematic alterations in extracellular field potentials in stratum pyramidale accompanied the ionic shifts. Following stimulation K+ undershoots occurred. An active K+ uptake mechanism was demonstrated using iontophoretic K+ pulses. [K+]o and [Ca2+]o changes occurred in parallel and in a laminar distribution with maximal changes recorded in stratum pyramidale. Maximal [K+]o changes occurred from baselines of 5 mM and declined progressively at higher baseline levels. During epileptiform activity produced by exposure of slices to penicillin, larger ionic shifts with a more rapid onset occurred. The alterations in [K+]o and [Ca2+]o in the hippocampal slice are similar in some respects to those obtained by stimulation in vivo, making this preparation a potentially useful one for determination of mechanisms and effects of alterations in the ionic microenvironment.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources