Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Dec 21;521(2):779-91.
doi: 10.1016/0005-2787(78)90317-9.

Electrostatic complexes of mitomycin C with nucleic acids and polyanions

Electrostatic complexes of mitomycin C with nucleic acids and polyanions

R Lipman et al. Biochim Biophys Acta. .

Abstract

Reductively activated mitomycin C exhibits strong, non-covalent electrostatic binding to polyanions such as polyvinylsulfate and polyphosphate. The protonated C-2 amino group generated by the reduction is most likely responsible for this type of interaction. At moderate drug and salt concentrations only covalent binding to nucleic acids is observable. This is shown to be guanine-specific in DNA for the first time, as well as in synthetic polyribo- and polydeoxyribonucleotides at 10--20 times higher binding levels than previously tested. At higher mitomycin C concentration, however, strong non-covalent electrostatic binding to nucleic acids also occurs, resulting in a binding ratio up to 1 mol drug bound per mol mononucleotide, although this non-specific binding is relatively inhibited compared to polyvinylsulfate. Salts also have an inhibitory effect on the non-specific binding to nucleic acids. A series of mitomycin derivatives were compared for their binding and cross-linking abilities using DNA as substrate, with the following results: (a) the presence of a basic nitrogen . funtion at C-2 promotes binding, both covalent and electrostatic, presumably by kinetically facilitating the approach between positively charged nitrogen and DNA. (b) The aziridine ring is the major covalent binding site, indispensable for crosslinking and determines the guanine-specificity of the binding.

PubMed Disclaimer

LinkOut - more resources