Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 May 10;255(9):3977-86.

The mechanism of action of penicillin. Penicillin acylates the active site of Bacillus stearothermophilus D-alanine carboxypeptidase

  • PMID: 7372662
Free article

The mechanism of action of penicillin. Penicillin acylates the active site of Bacillus stearothermophilus D-alanine carboxypeptidase

R R Yocum et al. J Biol Chem. .
Free article

Abstract

Penicillin kills susceptible bacteria by specifically inhibiting the transpeptidase that catalyzes the final step in cell wall biosynthesis, the cross-linking of peptidoglycan. It was hypothesized (Tipper, D., and Strominger, J. (1965) Proc. Natl. Acad. Sci. U.S.A. 54, 1133-1141) that 1) penicillin is a structural analog of the acyl-D-alanyl-D-alanine terminus of the pentapeptide side chains of nascent peptidoglycan, and that 2) penicillin, by virtue of its highly reactive beta-lactam structure, irreversibly acylates the active site of the cell wall transpeptidase. Although the cell wall transpeptidase has proven elusive, a closely related penicillin-sensitive cell wall enzyme, D-alanine carboxypeptidase, has been purified from membranes of Bacillus stearothermophilus by penicillin affinity chromatography. By amino acid sequence analysis of 14C-labeled cyanogen bromide peptides generated and purified from this carboxypeptidase covalently labeled with either [14C]penicillin G or the substrate, [14C]diacetyl-L-lysyl-D-alanyl-D-lactate, it was shown that the penicillin and substrate were both bound as esters to a serine at residue 36. Therefore, the second hypothesis stated above was proven to be correct for D-alanine carboxypeptidase. Several new methods were developed in the course of this work, including 1) a rapid penicillin-binding assay, 2) use of hydroxylamine to protect peptides against carbamylation during ion exchange chromatography in concentrated urea solutions, and 3) gel filtration chromatography in 70% formic acid, a universal solvent for peptides.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources