Action spectrum and quantum efficiency for proton pumping in Halobacterium halobium
- PMID: 7378354
- DOI: 10.1021/bi00551a024
Action spectrum and quantum efficiency for proton pumping in Halobacterium halobium
Abstract
The action spectrum and quantum efficiency (phi H+) for proton ejection from Halobacterium halobium have been determined under conditions chosen to minimize light-triggered proton influx which is usually observed in intact cells. The action spectrum for the carotenoid-containing strain, R1, shows that light energy absorbed by the carotenoids does not contribute to the proton ejection. After correction for shielding by the carotenoids and other cell pigments, the action spectrum closely follows the absorption spectrum of bacteriorhosopsin. Values determined for phi H+ in H. halobium cells and cell envelopes range from 0.4 to 0.7. These values are significantly higher than the currently accepted value for the quantum efficiency for the photoreaction cycle of bacteriorhodopsin in isolated purple membrane, suggesting that at least in intact cells and envelopes more than one proton is pumped during the bacteriorhodopsin photocycle. A new nondestructive assay for bacteriorhopopsin in intact cells and envelopes which also contain other pigments was used in this work.
Similar articles
-
[Light-induced changes in quantum yields of the photochemical cycle of conversion of bacteriorhodopsin and transmembrane proton transfer in cells of Halobacterium halobium].Biokhimiia. 1982 Jul;47(7):1230-40. Biokhimiia. 1982. PMID: 7115823 Russian.
-
Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane.Biochim Biophys Acta. 1976 Sep 13;440(3):545-56. doi: 10.1016/0005-2728(76)90041-4. Biochim Biophys Acta. 1976. PMID: 963044
-
The quantum efficiency of proton pumping by the purple membrane of Halobacterium halobium.Biophys J. 1980 May;30(2):231-42. doi: 10.1016/S0006-3495(80)85091-0. Biophys J. 1980. PMID: 7260274 Free PMC article.
-
Structure and function of bacteriorhodopsin.Adv Biophys. 1988;24:123-75. doi: 10.1016/0065-227x(88)90006-8. Adv Biophys. 1988. PMID: 3077237 Review.
-
The purple membrane from Halobacterium halobium.Annu Rev Biophys Bioeng. 1977;6:87-109. doi: 10.1146/annurev.bb.06.060177.000511. Annu Rev Biophys Bioeng. 1977. PMID: 326156 Review. No abstract available.
Cited by
-
Structural conservation and functional diversity of V-ATPases.J Bioenerg Biomembr. 1992 Aug;24(4):407-14. doi: 10.1007/BF00762533. J Bioenerg Biomembr. 1992. PMID: 1400285 Review.
-
Monomeric and aggregated bacteriorhodopsin: Single-turnover proton transport stoichiometry and photochemistry.Proc Natl Acad Sci U S A. 1988 Dec;85(24):9509-13. doi: 10.1073/pnas.85.24.9509. Proc Natl Acad Sci U S A. 1988. PMID: 16594006 Free PMC article.
-
Photoconversion from the light-adapted to the dark-adapted state of bacteriorhodopsin.Biophys J. 1985 Aug;48(2):201-8. doi: 10.1016/S0006-3495(85)83773-5. Biophys J. 1985. PMID: 4052558 Free PMC article.
-
Box-shaped halophilic bacteria.J Bacteriol. 1982 Sep;151(3):1532-42. doi: 10.1128/jb.151.3.1532-1542.1982. J Bacteriol. 1982. PMID: 6286602 Free PMC article.
-
The opsin family of proteins.Biochem J. 1986 Sep 15;238(3):625-42. doi: 10.1042/bj2380625. Biochem J. 1986. PMID: 2948499 Free PMC article. Review. No abstract available.