Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Jun;85(3):534-48.
doi: 10.1083/jcb.85.3.534.

Stoichiometry of wheat germ agglutinin as a morphology controlling agent and as a morphology controlling agent and as a morphology protective agent for the human erythrocyte

Stoichiometry of wheat germ agglutinin as a morphology controlling agent and as a morphology controlling agent and as a morphology protective agent for the human erythrocyte

R E Lovrien et al. J Cell Biol. 1980 Jun.

Abstract

The lectin wheat germ agglutinin (WGA) is an unusually effective agent in controlling both the forward and reverse reactions of the reversible morphology conversion discocyte in equilibrium with echinocyte for the human erythrocyte. Under conditions severe enough to drive the reactions to completion in either direction without the lectin, WGA is able to stabilize both these morphologies and to fully prevent conversion of either morphology. The lectin can quantitatively block both reactions. The ability of WGA to carry out these functions has no obvious rate limitation. Its effectiveness depends mainly on its binding stoichiometry, particularly toward the transmembrane glycoprotein, glycophorin. The critical binding stoichiometries for both the lectin and the echinocytic agent were determined in relation to the binding isotherms using 125I-labeled WGA and 35S-labeled dodecyl sulfate. There appear to be two principal stoichiometries for WGA binding that are important in its control of erythrocyte morphology. The first stoichiometry marks the threshold of obvious protection of the discocyte against strong echinocytic agents such as detergents and, likely, is simply a 1:1 stoichiometry of WGA: glycophorin, assuming currently recognized values of 3--5 x 10(5) copies of glycophorin per cell. The second important stoichiometry, whereby the cell's morphology is protected against extremely severe stress, involves binding of approximately 4--5 WGA molecules per glycophorin. The controls that WGA exerts can be instantly abolished by added N-acetylglucosamine. However, N-acetylglucosamine ligands on the erythrocyte are of less importance than membrane neuraminic acid residues in enabling WGA to control the cell's morphology, as is shown by comparing intact cells with completely desialated cells. WGA can also be used to produce elliptocytes in vitro, but it does this at levels approaching monolayer coverage of the cell with WGA.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biochemistry. 1968 Apr;7(4):1357-61 - PubMed
    1. Biochemistry. 1971 Jun 22;10(13):2606-17 - PubMed
    1. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1445-9 - PubMed
    1. Biochemistry. 1973 Mar 27;12(7):1312-23 - PubMed
    1. Nat New Biol. 1973 Feb 7;241(110):191-2 - PubMed

Publication types