Circular dichroism of cattle rhodopsin and bathorhodopsin at liquid nitrogen temperatures
- PMID: 7397132
- DOI: 10.1016/0005-2728(80)90175-9
Circular dichroism of cattle rhodopsin and bathorhodopsin at liquid nitrogen temperatures
Abstract
The photoevent in vision has been considered to be the conversion of rhodopsin to bathorhodopsin, which is caused by photoisomerization of the chromphoric retinal. Recently some objections were raised to this hypothesis. The reliability of the hypothesis was verified by measurement of circular dichroism of bathorhodopsin. The measurement of circular dichroism of rhodopsin extract (containing 66% or 75% of glycerol) at liquid nitrogen temperatures (-195 degrees C) by a conventional spectropolarimeter induced an extraordinary large signal, owing to linear dichroism originated from conversion of rhodopsin to bathorhodopsin by the measuring light. The similar linear dichrolism can be induced by irradiation of rhodopsin extract at -195 degrees C with polarized light or natural light. At photosteady state the linear dichroism disappeared. Circular dichroism spectrum of cattle rhodopsin displayed two positive peaks ([theta]max = 80 800 degrees at 335 nm, and [theta]max = 42 600 degrees at 500 nm) at -195 degrees C, whereas, bathorhodopsin displayed a positive peak ([theta]max = 43 100 degrees at 334 nm) and a negative peak ([theta]max = 163 000 degrees at 540 nm). The change of the positive sign to negative one at alpha-band of circular dichroism spectrum supports the hypothesis that the conversion of rhodopsin is due to rotation of the chromophoric retinal about C-11--12 double bond ('photoisomerization model').
Similar articles
-
Absolute absorption spectra of batho- and photorhodopsins at room temperature. Picosecond laser photolysis of rhodopsin in polyacrylamide.Biophys J. 1989 Sep;56(3):453-7. doi: 10.1016/S0006-3495(89)82692-X. Biophys J. 1989. PMID: 2790133 Free PMC article.
-
Photophysiological functions of visual pigments.Adv Biophys. 1984;17:5-67. doi: 10.1016/0065-227x(84)90024-8. Adv Biophys. 1984. PMID: 6242325 Review.
-
Circular dichroism of squid rhodopsin and its intermediates.Biochim Biophys Acta. 1978 Dec 7;504(3):413-30. doi: 10.1016/0005-2728(78)90064-6. Biochim Biophys Acta. 1978. PMID: 718881
-
Studies on structure and function of rhodopsin by use of cyclopentatrienylidene 11-cis-locked-rhodopsin.Biochemistry. 1984 Nov 20;23(24):5826-32. doi: 10.1021/bi00319a023. Biochemistry. 1984. PMID: 6098298
-
Primary intermediates of rhodopsin studied by low temperature spectrophotometry and laser photolysis. Bathorhodopsin, hypsorhodopsin and photorhodopsin.Vision Res. 1984;24(11):1455-63. doi: 10.1016/0042-6989(84)90306-7. Vision Res. 1984. PMID: 6398559 Review.
Cited by
-
Absolute absorption spectra of batho- and photorhodopsins at room temperature. Picosecond laser photolysis of rhodopsin in polyacrylamide.Biophys J. 1989 Sep;56(3):453-7. doi: 10.1016/S0006-3495(89)82692-X. Biophys J. 1989. PMID: 2790133 Free PMC article.
-
Photoisomerization mechanism of the rhodopsin chromophore: picosecond photolysis of pigment containing 11-cis-locked eight-membered ring retinal.Proc Natl Acad Sci U S A. 1993 May 1;90(9):4072-6. doi: 10.1073/pnas.90.9.4072. Proc Natl Acad Sci U S A. 1993. PMID: 8483923 Free PMC article.
-
The molecular structure of a curl-shaped retinal isomer.J Mol Model. 2008 Aug;14(8):717-26. doi: 10.1007/s00894-008-0284-1. Epub 2008 Mar 20. J Mol Model. 2008. PMID: 18351404
-
QM/MM study of the structure, energy storage, and origin of the bathochromic shift in vertebrate and invertebrate bathorhodopsins.J Am Chem Soc. 2011 Apr 6;133(13):4734-7. doi: 10.1021/ja200322w. Epub 2011 Mar 10. J Am Chem Soc. 2011. PMID: 21391708 Free PMC article.
-
Dynamic structure of retinylidene ligand of rhodopsin probed by molecular simulations.J Mol Biol. 2007 Sep 28;372(4):906-917. doi: 10.1016/j.jmb.2007.06.047. Epub 2007 Jun 26. J Mol Biol. 2007. PMID: 17719606 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources