The effects of potassium and membrane potential on sodium-dependent glutamic acid uptake
- PMID: 7397147
- DOI: 10.1016/0005-2736(80)90067-x
The effects of potassium and membrane potential on sodium-dependent glutamic acid uptake
Abstract
The uptake of L-glutamic acid into brush-border membrane vesicles isolated from rat renal proximal tubules is NA+-dependent. In contrast to Na+-dependent uptake of D-glucose, pre-equilibration of the vesicles with K+ stimulates L-glutamic acid uptake. Imposition of a K+ gradient ([Ki+] > [Ko+]) further enhances Na+-dependent L-glutamic acid uptake, but leaves K+-dependent glucose transport unchanged. If K+ is present only at the outside of the vesicles, transport is inhibited. Intravesicular Rb+ and, to a lesser extent, Cs+ can replace intravesicular K+ to stimulate L-glutamic acid uptake. Changes in membrane potential incurred by the imposition of an H+-diffusion potential or anion replacement markedly affect Na+-dependent glutamic acid uptake only in the presence of K+. Experiments with a potential-sensitive cyanine dye also indicate that, in the presence of intravesicular K+ a charge movement is involved in Na+-dependent transport of L-glutamic acid. The data indicate that Na+-dependent L-glutamic acid transport can be additionally energized by a K+ gradient. Furthermore, intravesicular K+ render Na+-dependent L-glutamic acid transport sensitive to changes in the transmembrane electrical potential difference.
Similar articles
-
[Studies on the mechanism of placental transport of L-glutamate (the effect of K+ in microvillous vesicles on L-glutamate uptake)].Nihon Sanka Fujinka Gakkai Zasshi. 1985 Oct;37(10):2005-9. Nihon Sanka Fujinka Gakkai Zasshi. 1985. PMID: 4078404 Japanese.
-
Characteristics of glutamic acid transport by rabbit intestinal brush-border membrane vesicles. Effects of Na+-, K+- and H+-gradients.Biochim Biophys Acta. 1984 Aug 22;775(2):129-40. doi: 10.1016/0005-2736(84)90163-9. Biochim Biophys Acta. 1984. PMID: 6147159
-
The role of potassium and chloride ions on the Na+/acidic amino acid cotransport system in rat intestinal brush-border membrane vesicles.Biochim Biophys Acta. 1983 Jul 13;732(1):24-31. doi: 10.1016/0005-2736(83)90182-7. Biochim Biophys Acta. 1983. PMID: 6135444
-
Transport of organic compounds in renal plasma membrane vesicles of cadmium intoxicated rats.Kidney Int. 1990 Feb;37(2):727-35. doi: 10.1038/ki.1990.39. Kidney Int. 1990. PMID: 2407886 Review.
-
Membrane-linked energy buffering as the biological function of Na+/K+ gradient.FEBS Lett. 1978 Mar 15;87(2):171-9. doi: 10.1016/0014-5793(78)80326-3. FEBS Lett. 1978. PMID: 344066 Review. No abstract available.
Cited by
-
Demonstration of sodium-dependent, electrogenic substrate transport in rat small intestinal brush border membrane vesicles by a cyanine dye.Pflugers Arch. 1984 Feb;400(2):178-82. doi: 10.1007/BF00585036. Pflugers Arch. 1984. PMID: 6718223
-
Electrogenic transport of neutral and dibasic amino acids in a cultured opossum kidney cell line (OK).Pflugers Arch. 1989 Sep;414(5):543-50. doi: 10.1007/BF00580989. Pflugers Arch. 1989. PMID: 2780218
-
Microscopic description of voltage effects on ion-driven cotransport systems.J Membr Biol. 1986;91(3):275-84. doi: 10.1007/BF01868820. J Membr Biol. 1986. PMID: 2427727
-
Relationship of the Donnan potential to the transmembrane pH gradient in tracheal apical membrane vesicles.J Membr Biol. 1986;94(3):197-204. doi: 10.1007/BF01869715. J Membr Biol. 1986. PMID: 3560202
-
Kinetics and localization of tubular resorption of "acidic" amino acids. A microperfusion and free flow micropuncture study in rat kidney.Pflugers Arch. 1983 Mar 1;396(3):218-24. doi: 10.1007/BF00587858. Pflugers Arch. 1983. PMID: 6133264
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials