Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1980 Sep;214(3):721-5.

Bioactivation and covalent binding of halothane in vitro: studies with [3H]- and [14C]halothane

  • PMID: 7400975
Comparative Study

Bioactivation and covalent binding of halothane in vitro: studies with [3H]- and [14C]halothane

A J Gandolfi et al. J Pharmacol Exp Ther. 1980 Sep.

Abstract

To determine if the hydrogen atom of halothane (CF3CHBrCl) is retained on the reactive intermediates that covalently bind to microsomal lipids and protein, [3H]halothane and [14C]halothane were incubated with rat hepatic microsomes and a NADPH generating system. Both [3H]- and [14C]halothane were bioactivated and bound to a greater degree when incubations were performed in a N2 atmosphere rather than an O2 atmosphere. Binding of [3H]- and [14C]halothane equivalents was significanty enhanced when heaptic microsomes from phenobarbital- or Aroclor 1254-treated rats were used in the incubations. Omission of NADPH or incubation with CO was inhibitory to the binding of both [3H]- and [14C]halothane. The apparent kinetic constants for binding or halothane equivalents, Km and Vmax, indicate a significantly higher Km but lower Vmax for the formation and/or binding of 3H-binding equivalents. The results indicate tht halothane is primarily bioactivated under conditions that promote its reductive metabolism and that this reactive metabolism does not involve cleavage of the carbon-hydrogen bond of halothane. Differences in binding under N2 and O2 as well as between [3H]- and [14C]halothane suggest that multiple reactive intermediates may form during the biotransformation of halothane.

PubMed Disclaimer

Similar articles

Cited by

Publication types