Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Sep;239(3):C75-89.
doi: 10.1152/ajpcell.1980.239.3.C75.

Cytoplasmic regulation of tight-junction permeability: effect of plant cytokinins

Cytoplasmic regulation of tight-junction permeability: effect of plant cytokinins

C J Bentzel et al. Am J Physiol. 1980 Sep.

Abstract

The significance of the "leaky" tight junction might be understood better if cells of the epithelial monolayer possessed mechanisms to regulate molecular flow through the junction. To test this possibility, Necturus gallbladder, a representative leaky epithelium, was studied before, during, and after mucosal exposure to plant cytokinins and two other microfilament-active drugs, cytochalasin B and phalloidin. Concomitant with morphological changes in microfilaments, cytokinins induced rapid reversible increases in transepithelial resistance and potential difference (PD) and decreases in NaCl dilution potentials, with no change in the ratio of relative cell membrane resistances. Cytochalasin B (0.2-1.2 microM) and phalloidin (0.6-12.7 microM) caused similar changes in transepithelial resistance and PD. When the intramembranous structure of tight junctions was studied by freeze fracture, peak cytokinin-induced increments in transepithelial resistance were associated with more disorder in the strand meshwork resulting in a small increase in tight junction depth, but there was no evidence of de novo strand assembly. These studies suggest that permeability of the tight junction of Necturus gallbladder is subject to rapid reversible modulation, possibly under cytoskeletal control.

PubMed Disclaimer

Publication types