Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Oct;51(5):733-41.
doi: 10.3109/17453678008990868.

Tensile fracture of cancellous bone

Tensile fracture of cancellous bone

D R Carter et al. Acta Orthop Scand. 1980 Oct.

Abstract

Excised specimens of cancellous bone from human femora were subjected to compressive or tensile testing, and the resulting force-displacement curves were recorded. The relationships between bone strength and apparent density were similar for specimens tested in these two loading modes. The modulus of elasticity was also comparable for the tensile and compressive specimens. Specimens loaded in compression absorbed considerable energy after the initial fracture because of progressive impaction of the trabeculae. In the specimens loaded in tension, the fractured bone fragments separated and therefore absorbed little additional energy after the initial failure. The energy absorption capacity was thus significantly lower for the tensile specimens. The results of this study show that the primary difference in mechanical properties of cancellous bone tested in tension and compression is the energy absorption capacity. This finding suggests that tensile and avulsion fractures of cancellous bone observed clinically are associated with minimal energy absorption and therefore may be precipitated by relatively minor trauma.

PubMed Disclaimer

Publication types

LinkOut - more resources