Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Jan 20;20(2):428-35.
doi: 10.1021/bi00505a031.

Photochemical and functional properties of bacteriorhodopsins formed from 5,6-dihydro- and 5,6-dihydrodesmethylretinals

Photochemical and functional properties of bacteriorhodopsins formed from 5,6-dihydro- and 5,6-dihydrodesmethylretinals

B Mao et al. Biochemistry. .

Abstract

5,6-Dihydroretinal and 5,6-dihydro-1,1,5,9,13-desmethylretinal are synthesized, and their all-trans isomers are shown to form pigment analogues (lambda max at 475 and 460 nm, respectively) of bacteriorhodopsin (purple membrane protein). The shift of the absorption maximum od the pigment from that of the protonated Schiff base of the chromophore for 5,6-dihydrobacteriorhodopsin is small compared to that of the native pigment, suggesting that negative charges similar to those controlling the lambda max of visual pigment rhodopsin exist near the cyclohexyl ring. Both pigment analogues undergo reversible light-induced spectral shifts reflecting cyclic photoreactions of the pigments. These results indicate that the absence of the C-5--C-6 double bond and of the five methyl groups of retinal does not abolish the photochemistry of these pigment analogues and strongly suggest that these structural features are not directly required for the photoreactions of native bacteriorhodopsin. The apparent rates of the photochemical transformations of these artificial pigments are quite different from those of bacteriorhodopsin. A working hypothesis is proposed for the photocycle of the pigment analogues, which includes a slower light-induced cycling rate (for the light-adapted pigments) than that of native bacteriorhodopsin and an increased rate of dark adaptation. When incorporated into egg lecithin vesicles both pigment analogues show proton pumping ability, again indicating that the missing double bond and the methyl groups are not structurally required for the function of the pigments.

PubMed Disclaimer

Publication types

LinkOut - more resources