Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 Oct;15(10):6461-74.
doi: 10.1523/JNEUROSCI.15-10-06461.1995.

Transfer of coded information from sensory to motor networks

Affiliations
Review

Transfer of coded information from sensory to motor networks

E Salinas et al. J Neurosci. 1995 Oct.

Abstract

During sensory-guided motor tasks, information must be transferred from arrays of neurons coding target location to motor networks that generate and control movement. We address two basic questions about this information transfer. First, what mechanisms assure that the different neural representations align properly so that activity in the sensory network representing target location evokes a motor response generating accurate movement toward the target? Coordinate transformations may be needed to put the sensory data into a form appropriate for use by the motor system. For example, in visually guided reaching the location of a target relative to the body is determined by a combination of the position of its image on the retina and the direction of gaze. What assures that the motor network responds to the appropriate combination of sensory inputs corresponding to target position in body- or arm-centered coordinates? To answer these questions, we model a sensory network coding target position and use it to drive a similarly modeled motor network. To determine the actual motor response we use decoding methods that have been developed and verified in experimental work. We derive a general set of conditions on the sensory-to-motor synaptic connections that assure a properly aligned and transformed response. The accuracy of the response for different numbers of coding cells is computed. We show that development of the synaptic weights needed to generate the correct motor response can occur spontaneously through the observation of random movements and correlation-based synaptic modification. No error signal or external teaching is needed during this process. We also discuss nonlinear coordinate transformations and the presence of both shifting and nonshifting receptive fields in sensory/motor systems.

PubMed Disclaimer

Publication types

LinkOut - more resources