Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Sep;13(5):792-801.
doi: 10.1002/jor.1100130520.

Human monocyte response to particulate biomaterials generated in vivo and in vitro

Affiliations

Human monocyte response to particulate biomaterials generated in vivo and in vitro

A S Shanbhag et al. J Orthop Res. 1995 Sep.

Abstract

We studied the ability of four clinically relevant particle species to stimulate human peripheral blood monocytes to release bone-resorbing agents, including interleukin-1 (both interleukin-1 alpha and interleukin-1 beta), interleukin-6, and prostaglandin E2. The species studied were titanium-6% aluminum-4% vanadium (TiAlV), commercially pure titanium, fabricated ultrahigh molecular weight polyethylene, and polyethylene retrieved from interfacial membranes of failed uncemented total hip arthroplasties. For all species, the mean size was less than 1 micron. Human peripheral blood monocytes were challenged with these particles in a uniform manner on the basis of surface area. Phorbol 12-myristate acetate, zymosan, and nonphagocytosable titanium particles served as controls. Stimulation of human monocytes is a function of the composition and concentration of particles. In this study, TiAlV particles appeared to be the most competent to elicit the synthesis and release of inflammatory mediators. Particles of commercially pure titanium and of fabricated ultrahigh molecular weight polyethylene also could induce the release of various cellular mediators, albeit at a lower level, whereas the particles of polyethylene retrieved from interfacial membranes were less stimulatory in these short-term in vitro experiments.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources