The 2.0 A crystal structure of Scapharca tetrameric hemoglobin: cooperative dimers within an allosteric tetramer
- PMID: 7473710
- DOI: 10.1006/jmbi.1995.0543
The 2.0 A crystal structure of Scapharca tetrameric hemoglobin: cooperative dimers within an allosteric tetramer
Abstract
The crystal structure of the allosteric tetrameric hemoglobin from Scapharca inaequivalvis (HbII) has been determined in the carbonmonoxy liganded state using a combination of anomalous scattering and molecular replacement. The molecular model has been refined at 2.0 A resolution to a conventional R-factor of 0.173 and a free R-factor of 0.244. The tetramer is formed from two identical heterodimers. Each heterodimer is assembled with intersubunit contacts involving the E and F helices and heme groups in a manner that is very similar to that of the cooperative Scapharca homodimeric hemoglobin. In addition, the ordered water structure observed in these dimeric interfaces is quite similar. These structural similarities strongly suggest that the dimers within the Scapharca tetramer are cooperative. Subunits assemble into a tetramer in a distinctly non-tetrahedral arrangement, with the pseudo 2-fold axes of the heterodimer oriented at an angle of 74.5 degrees relative to the molecular 2-fold. This arrangement requires that two subunit types have distinct locations and contacts, despite the very similar tertiary structures. HbII polymerizes to higher-order assemblages in a ligand, proton and anion dependent fashion. The lattice contacts in the HbII-CO crystal suggest possible modes for this association.
Similar articles
-
Crystal structure of oxygenated Scapharca dimeric hemoglobin at 1.7-A resolution.J Biol Chem. 1994 Oct 14;269(41):25259-67. doi: 10.2210/pdb1hbi/pdb. J Biol Chem. 1994. PMID: 7929217
-
Mutational destabilization of the critical interface water cluster in Scapharca dimeric hemoglobin: structural basis for altered allosteric activity.J Mol Biol. 1998 Dec 4;284(3):729-39. doi: 10.1006/jmbi.1998.2195. J Mol Biol. 1998. PMID: 9826511
-
High-resolution crystallographic analysis of a co-operative dimeric hemoglobin.J Mol Biol. 1994 Jan 14;235(2):657-81. doi: 10.1006/jmbi.1994.1019. J Mol Biol. 1994. PMID: 8289287
-
Structural and thermodynamic aspects of cooperativity in the homodimeric hemoglobin from Scapharca inaequivalvis.Biophys Chem. 2000 Aug 30;86(2-3):173-8. doi: 10.1016/s0301-4622(00)00162-9. Biophys Chem. 2000. PMID: 11026682 Review.
-
The pathway of allosteric control as revealed by hemoglobin intermediate states.FASEB J. 1995 Feb;9(2):210-8. doi: 10.1096/fasebj.9.2.7781923. FASEB J. 1995. PMID: 7781923 Review.
Cited by
-
Structure of an extracellular giant hemoglobin of the gutless beard worm Oligobrachia mashikoi.Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14521-6. doi: 10.1073/pnas.0501541102. Epub 2005 Oct 3. Proc Natl Acad Sci U S A. 2005. PMID: 16204001 Free PMC article.
-
Cooperative protein structural dynamics of homodimeric hemoglobin linked to water cluster at subunit interface revealed by time-resolved X-ray solution scattering.Struct Dyn. 2016 Apr 14;3(2):023610. doi: 10.1063/1.4947071. eCollection 2016 Mar. Struct Dyn. 2016. PMID: 27158635 Free PMC article.
-
Effect of Occluded Ligand Migration on the Kinetics and Structural Dynamics of Homodimeric Hemoglobin.J Phys Chem B. 2020 Feb 27;124(8):1550-1556. doi: 10.1021/acs.jpcb.9b11749. Epub 2020 Feb 19. J Phys Chem B. 2020. PMID: 32027135 Free PMC article.
-
Selective forces acting during multi-domain protein evolution: the case of multi-domain globins.Springerplus. 2015 Jul 16;4:354. doi: 10.1186/s40064-015-1124-2. eCollection 2015. Springerplus. 2015. PMID: 26191481 Free PMC article.
-
Surprises and pitfalls arising from (pseudo)symmetry.Acta Crystallogr D Biol Crystallogr. 2008 Jan;64(Pt 1):99-107. doi: 10.1107/S090744490705531X. Epub 2007 Dec 5. Acta Crystallogr D Biol Crystallogr. 2008. PMID: 18094473 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources