Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Sep;12(5):921-7.
doi: 10.1093/oxfordjournals.molbev.a040269.

Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population

Affiliations

Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population

L Excoffier et al. Mol Biol Evol. 1995 Sep.

Abstract

Molecular techniques allow the survey of a large number of linked polymorphic loci in random samples from diploid populations. However, the gametic phase of haplotypes is usually unknown when diploid individuals are heterozygous at more than one locus. To overcome this difficulty, we implement an expectation-maximization (EM) algorithm leading to maximum-likelihood estimates of molecular haplotype frequencies under the assumption of Hardy-Weinberg proportions. The performance of the algorithm is evaluated for simulated data representing both DNA sequences and highly polymorphic loci with different levels of recombination. As expected, the EM algorithm is found to perform best for large samples, regardless of recombination rates among loci. To ensure finding the global maximum likelihood estimate, the EM algorithm should be started from several initial conditions. The present approach appears to be useful for the analysis of nuclear DNA sequences or highly variable loci. Although the algorithm, in principle, can accommodate an arbitrary number of loci, there are practical limitations because the computing time grows exponentially with the number of polymorphic loci. Although the algorithm, in principle, can accommodate an arbitrary number of loci, there are practical limitations because the computing time grows exponentially with the number of polymorphic loci.

PubMed Disclaimer

Publication types

LinkOut - more resources