Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Sep;68(1):19-27.
doi: 10.1016/0306-4522(95)00099-5.

Synaptic loss in cognitively impaired aged rats is ameliorated by chronic human nerve growth factor infusion

Affiliations

Synaptic loss in cognitively impaired aged rats is ameliorated by chronic human nerve growth factor infusion

K S Chen et al. Neuroscience. 1995 Sep.

Abstract

In the present study, we assessed the synaptic changes in aged impaired and unimpaired rats, and the effect of exogenous human nerve growth factor administration on behavioral activity and synaptic density. Human nerve growth factor was administered into the rat ventricles with a cannula connected to an osmotic pump in adult, aged impaired and unimpaired rats. Behavioral performance was evaluated in the Morris water maze. Aged impaired rats had an 18 +/- 4% decrease in the number of synaptophysinimmunoreactive presynaptic terminals as compared to aged unimpaired rats. After a continuous four-week human nerve growth factor, the aged impaired rats displayed a significant 16 +/- 3% increase in the number of synaptophysin-immunoreactive presynaptic terminals in the frontal cortex, as compared to aged impaired rats treated with vehicle. This increase correlated with an improvement in water maze performance (r = -0.74, P < 0.001). Measurements of synaptophysin-immunoreactive presynaptic terminals in other cortical and subcortical regions did not show any statistically significant difference or correlations among the various groups. These results support the possibility that nerve growth factor mediates the induction of other trophic factors which, in turn, might potentially produce a sprouting response of non-cholinergic fibers that ameliorate the cognitive deficits in impaired, aged rats.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources