Properties of calcium currents and contraction in cultured rat diaphragm muscle
- PMID: 7478941
- DOI: 10.1007/BF00386184
Properties of calcium currents and contraction in cultured rat diaphragm muscle
Abstract
The characterization of calcium currents and contraction simultaneously measured in cultured rat diaphragm muscle cells was carried out in the present study. Whole-cell patch-clamp experiments were designed to further elucidate the mechanism of excitation-contraction (E-C) coupling in diaphragm which, though generally considered a skeletal-type muscle, has been reported to exhibit properties indicative of a cardiac-like E-C coupling mechanism. Normalized current/voltage (I/V) curves for two concentrations of external calcium (2.5 and 5 mM) were obtained from diaphragm myoballs. Both curves showed peaks corresponding to the activation of a T-type calcium current and a dihydropyridine-sensitive L-type calcium current. The normalized curve for the voltage dependence of the activation of contraction in diaphragm myoballs followed a typical Boltzmann-type relationship to the peak of contraction. Thereafter, the curve declined in a manner that was more pronounced in diaphragm compared to that measured in additional experiments using cultured rat limb muscle myoballs. This effect could be interpreted in terms of a more pronounced participation of the L-type current in E-C coupling in cultured diaphragm muscle. An increased likelihood of cultured diaphragm muscle to undergo depletion of sarcoplasmic reticular calcium stores during repetitive stimulation, or a heightened propensity for the voltage sensor for E-C coupling in diaphragm to enter the inactive state could also explain this effect. Maximal contractile activity was only slightly affected when the L-type current was blocked by externally applied cadmium (2 mM) or cobalt (3 mM), suggesting that a pronounced calcium-current-dependent component of contraction is unlikely in cultured diaphragm muscle. These results show that T- and L-type calcium channels are expressed in cultured rat diaphragm muscle cells and that, in contrast to cardiac muscle, the entry of calcium ions via L-type voltage-dependent calcium channels is not a prerequisite for contraction. Differences in the voltage sensitivity of contraction, observed at depolarized membrane potentials in cultured rat diaphragm and limb muscle cells, suggest that the voltage sensor for E-C coupling in diaphragm might more readily enter an inactivated configuration - possibly by a mechanism which is dependent on the concentration of external calcium.