Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Mar;8(3):261-73.
doi: 10.1093/protein/8.3.261.

Engineering ribonuclease A: production, purification and characterization of wild-type enzyme and mutants at Gln11

Affiliations

Engineering ribonuclease A: production, purification and characterization of wild-type enzyme and mutants at Gln11

S B delCardayré et al. Protein Eng. 1995 Mar.

Abstract

Bovine pancreatic ribonuclease A (RNase A) has been the object of much landmark work in biological chemistry. Yet the application of the techniques of protein engineering to RNase A has been limited by problems inherent in the isolation and heterologous expression of its gene. A cDNA library was prepared from cow pancreas, and from this library the cDNA that codes for RNase A was isolated. This cDNA was inserted into expression plasmids that then directed the production of RNase A in Saccharomyces cerevisiae (fused to a modified alpha-factor leader sequence) or Escherichia coli (fused to the pelB signal sequence). RNase A secreted into the medium by S.cerevisiae was an active but highly glycosylated enzyme that was recoverable at 1 mg/l of culture. RNase A produced by E.coli was in an insoluble fraction of the cell lysate. Oxidation of the reduced and denatured protein produced active enzyme which was isolated at 50 mg/l of culture. The bacterial expression system is ideal for the large-scale production of mutants of RNase A. This system was used to substitute alanine, asparagine or histidine for Gln11, a conserved residue that donates a hydrogen bond to the reactive phosphoryl group of bound substrate. Analysis of the binding and turnover of natural and synthetic substrates by the wild-type and mutant enzymes shows that the primary role of Gln11 is to prevent the non-productive binding of substrate.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources