Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 Oct;75(4):749-57.
doi: 10.1152/physrev.1995.75.4.749.

Human surfactant protein B: structure, function, regulation, and genetic disease

Affiliations
Review

Human surfactant protein B: structure, function, regulation, and genetic disease

J A Whitsett et al. Physiol Rev. 1995 Oct.

Abstract

Elucidation of the structure and function of the hydrophobic surfactant protein (SP-B) and the SP-B gene has provided critical insight into surfactant homeostasis and control of respiratory epithelial cell gene expression. Surfactant protein B, in concert with surfactant protein A (SP-A), surfactant protein C (SP-C), and surfactant phospholipids, contributes to the structure and function of surfactant particles, determining surface activities and pathways by which surfactant phospholipids and proteins are processed, routed, packaged, and secreted from lamellar bodies by type II epithelial cells. After secretion, SP-B plays an essential role in determining the structure of tubular myelin, the stability and rapidity of spreading, and the recycling of surfactant phospholipids. The biochemical and structural signals underlying the homeostasis of alveolar surfactant are likely mediated by interactions between the surfactant proteins and phospholipids producing discrete structural forms that vary in size, aproprotein, and phospholipid content. Distinctions in structure, protein, and size are likely to determine the function of surfactant particles, their catabolism, or recycling by alveolar macrophages and airway epithelial cells. Analysis of the genetic controls governing the SP-B gene has led to the definition of DNA-protein interactions that determine respiratory epithelial cell gene expression in general. The important role of SP-B in lung function was defined by the study of a lethal neonatal respiratory disease, hereditary SP-B deficiency, caused by mutations in the human SP-B gene.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources