Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jun;117(6):1232-7.
doi: 10.1093/oxfordjournals.jbchem.a124849.

Phosphatidylserine-specific transbilayer lipid translocation in synaptosomal plasma membranes from Narke japonica

Affiliations
Free article

Phosphatidylserine-specific transbilayer lipid translocation in synaptosomal plasma membranes from Narke japonica

K Anzai et al. J Biochem. 1995 Jun.
Free article

Abstract

We measured the translocation of exogenous radiolabeled phospholipid probes from the outer to the inner leaflet in the synaptosomal plasma membranes from the electric organs of Narke japonica, a Japanese marine ray. These radioactive probes can provide a convenient and highly sensitive means of measuring the translocation kinetics of phospholipids between outer and inner leaflets of biomembranes that are available only with low yield [Anzai et al. (1993) Biochim. Biophys. Acta 1151, 69-75]. Translocation kinetics revealed that the behavior of phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylcholine (PC) differed. PS quickly disappeared from the outer leaflet of the bilayer. The translocation of PE and PC was slow and about 80% of the PE- and PC-probes remained in the outer leaflet at 3 h. These results differ from those of translocation in erythrocyte membranes measured using the same probes, where aminophospholipid translocase translocated both PS and PE from the outer to the inner leaflet of the bilayer, although the rate was faster for PS than for PE. In this study, the translocation was apparently PS-specific, and it was inhibited by SH reagent or intrasynaptosomal ATP-depletion. These findings clearly demonstrate that the translocation is driven by an ATP-dependent protein, which has apparent PS-specificity. We suggest that there is a translocase other than erythrocyte-type aminophospholipid translocase in synaptosomal plasma membranes from N. japonica.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms