Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Aug;430(4):526-33.
doi: 10.1007/BF00373889.

Properties of voltage-gated currents of microglia developed using macrophage colony-stimulating factor

Affiliations

Properties of voltage-gated currents of microglia developed using macrophage colony-stimulating factor

C Eder et al. Pflugers Arch. 1995 Aug.

Abstract

Microglia were isolated from a murine neonatal brain cell culture in which their development had been stimulated by supplementation with the macrophage/microglial growth factor macrophage colony-stimulating factor (M-CSF). Using the whole-cell configuration of the patch-clamp technique, voltage-gated membrane currents were recorded from these microglial cells. Hyperpolarization induced inward rectifying K+ currents, as described for microglia from untreated cultures. These currents activated negative to the K+ equilibrium potential and, with a strong hyperpolarization, displayed time-dependent inactivation. The inactivation was abolished when extracellular NaCl was replaced by N-methyl-D-glucamine (NMG), thereby indicating a partial block of this K+ conductance by Na+. Inward rectifying currents were also blocked by extracellularly applied Cs+ or Ba2+. They were slightly diminished following treatment with extracellular tetraethylammonium chloride (TEA) but were not affected by 4-aminopyridine (4-AP). Upon long lasting depolarizing voltage pulses to potentials positive to 0 mV, the cells exhibited a slowly activating H+ current which could be reduced by application of inorganic polyvalent cations (Ba2+, Cd2+, Co2+, La3+, Ni2+, Zn2+) as well as by 4-AP or TEA. Based on their kinetics and pharmacological characteristics, both currents detected on M-CSF-grown microglia are suggested to correspond to the inward rectifier and the H+ current of macrophages.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Pflugers Arch. 1981 Aug;391(2):85-100 - PubMed
    1. J Physiol. 1994 Feb 15;475(1):15-32 - PubMed
    1. J Membr Biol. 1988 Jul;103(1):55-66 - PubMed
    1. J Physiol. 1984 Jun;351:199-216 - PubMed
    1. Eur J Immunol. 1992 Sep;22(9):2429-36 - PubMed

Publication types

MeSH terms

LinkOut - more resources