In vivo assembly of the proteasomal complexes, implications for antigen processing
- PMID: 7499235
- DOI: 10.1074/jbc.270.46.27687
In vivo assembly of the proteasomal complexes, implications for antigen processing
Abstract
The multicatalytic and multisubunit proteasomal complexes have been implicated in the processing of antigens to peptides presented by class I major histocompatibility complex molecules. Two structural complexes of this proteinase, 20 S and 26 S proteasomes, have been isolated from cells. By analyzing in vivo assembly of the proteasomal complexes we show that the 20 S proteasomal complexes are irreversibly assembled via 15 S assembly intermediates containing unprocessed beta-type subunits. The 20 S proteasomes further associate reversibly with proteasome activators PA28 or pre-existing ATPase complexes to form 26 S proteasomal complexes. Our findings that not all of the 20 S proteasomal complexes are assembled into 26 S proteasomal complexes within cells and that all of PA28 and ATPase complexes are associated with 20 S proteasomes strongly suggest that all proteasomal complexes coexist within cells. We further demonstrate that 26 S proteasomal complexes are predominantly present in the cytoplasm and a significant portion of the 20 S proteasomal complexes is associated with the endoplasmic reticulum membrane. Taken together, our findings suggest that depending upon their associated regulatory components, 26 S and 20 S-PA28 proteasomal complexes serve different housekeeping functions within the cells, while they degrade antigens in a cooperative manner in antigen processing.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
